57 research outputs found
Biosignatures of Exoplanets
Are we alone? Ancient astronomers across the continents knew the existence of five Solar System planets visible to the naked eye. They could tell that these celestial wanderers were unlike stars in that they only reflected light from the Sun. In the early 1600s, Galileo developed the first telescopes able to observe spots moving across the Sun and the passage of moons across the face of Jupiter. He verified the theory of Aristarchus (3rd c. BC), and refined by Nicolaus Copernicus (mid 16th c.) and Johannes Kepler (late 16th c.), that the Earth and the other planets, in fact, orbit the Sun and not the other way around. Around the same time, Dominican friar Giordano Bruno wondered about the possibility of life on other worlds orbiting other suns (and was burned at the stake for this and other heresies)
Habitable Climate Scenarios for Proxima Centauri b With a Dynamic Ocean
The nearby exoplanet Proxima Centauri b will be a prime future target for
characterization, despite questions about its retention of water. Climate
models with static oceans suggest that an Earth-like Proxima b could harbor a
small dayside region of surface liquid water at fairly warm temperatures
despite its weak instellation. We present the first 3-dimensional climate
simulations of Proxima b with a dynamic ocean. We find that an ocean-covered
Proxima b could have a much broader area of surface liquid water but at much
colder temperatures than previously suggested, due to ocean heat transport and
depression of the freezing point by salinity. Elevated greenhouse gas
concentrations do not necessarily produce more open ocean area because of
possible dynamic regime transitions. For an evolutionary path leading to a
highly saline present ocean, Proxima b could conceivably be an inhabited,
mostly open ocean planet dominated by halophilic life. For an ocean planet in
3:2 spin-orbit resonance, a permanent tropical waterbelt exists for moderate
eccentricity. Simulations of Proxima Centauri b may also be a model for the
habitability of planets receiving similar instellation from slightly cooler or
warmer stars, e.g., in the TRAPPIST-1, LHS 1140, GJ 273, and GJ 3293 systems.Comment: Submitted to Astrobiology; 38 pages, 12 figures, 5 table
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments
with Dynamics (ROCKE-3D) is a 3-Dimensional General Circulation Model (GCM)
developed at the NASA Goddard Institute for Space Studies for the modeling of
atmospheres of Solar System and exoplanetary terrestrial planets. Its parent
model, known as ModelE2 (Schmidt et al. 2014), is used to simulate modern and
21st Century Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing
effort to expand the capabilities of ModelE2 to handle a broader range of
atmospheric conditions including higher and lower atmospheric pressures, more
diverse chemistries and compositions, larger and smaller planet radii and
gravity, different rotation rates (slowly rotating to more rapidly rotating
than modern Earth, including synchronous rotation), diverse ocean and land
distributions and topographies, and potential basic biosphere functions. The
first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds
within the Solar System such as paleo-Earth, modern and paleo-Mars,
paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range
of temperatures, pressures, and atmospheric constituents we can then expand its
capabilities further to those exoplanetary rocky worlds that have been
discovered in the past and those to be discovered in the future. We discuss the
current and near-future capabilities of ROCKE-3D as a community model for
studying planetary and exoplanetary atmospheres.Comment: Revisions since previous draft. Now submitted to Astrophysical
Journal Supplement Serie
Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds
As photosynthesis on Earth produces the primary signatures of life that can
be detected astronomically at the global scale, a strong focus of the search
for extrasolar life will be photosynthesis, particularly photosynthesis that
has evolved with a different parent star. We take planetary atmospheric
compositions simulated by Segura, et al. (2003, 2005) for Earth-like planets
around observed F2V and K2V stars, modeled M1V and M5V stars, and around the
active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as
well as very low O2 content in case anoxygenic photosynthesis dominates. We
calculate the incident spectral photon flux densities at the surface of the
planet and under water. We identify bands of available photosynthetically
relevant radiation and find that photosynthetic pigments on planets around F2V
stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in
the NIR, in bands at 0.93-1.1 microns, 1.1-1.4 microns, 1.5-1.8 microns, and
1.8-2.5 microns. In addition, we calculate wavelength restrictions for
underwater organisms and depths of water at which they would be protected from
UV flares in the early life of M stars. We estimate the potential productivity
for both surface and underwater photosynthesis, for both oxygenic and
anoxygenic photosynthesis, and for hypothetical photosynthesis in which longer
wavelength, multi-photosystem series are used.Comment: 59 pages, 4 figures, 4 tables, forthcoming in Astrobiology ~March
200
Spectral signatures of photosynthesis I: Review of Earth organisms
Why do plants reflect in the green and have a 'red edge' in the red, and
should extrasolar photosynthesis be the same? We provide: 1) a brief review of
how photosynthesis works; 2) an overview of the diversity of photosynthetic
organisms, their light harvesting systems, and environmental ranges; 3) a
synthesis of photosynthetic surface spectral signatures; 4) evolutionary
rationales for photosynthetic surface reflectance spectra with regard to
utilization of photon energy and the planetary light environment. Given the
surface incident photon flux density spectrum and resonance transfer in light
harvesting, we propose some rules with regard to where photosynthetic pigments
will peak in absorbance: a) the wavelength of peak incident photon flux; b) the
longest available wavelength for core antenna or reaction center pigments; and
c) the shortest wavelengths within an atmospheric window for accessory
pigments. That plants absorb less green light may not be an inefficient legacy
of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200
Discovery of chlorophyll d: isolation and characterization of a far-red cyanobacterium from the original site of manning and strain (1943) at Moss Beach, California
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kiang, N. Y., Swingley, W. D., Gautam, D., Broddrick, J. T., Repeta, D. J., Stolz, J. F., Blankenship, R. E., Wolf, B. M., Detweiler, A. M., Miller, K. A., Schladweiler, J. J., Lindeman, R., & Parenteau, M. N. Discovery of chlorophyll d: isolation and characterization of a far-red cyanobacterium from the original site of manning and strain (1943) at Moss Beach, California. Microorganisms, 10(4), (2022): 819, https://doi.org/10.3390/microorganisms10040819.We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.N.Y.K., M.N.P. and R.E.B. were supported by the NASA Virtual Planetary Laboratory team (VPL), which was funded under NASA Astrobiology Institute Cooperative Agreement Number NNA13AA93A, and Grant Number 80NSSC18K0829. This work also benefited from participation in the NASA Nexus for Exoplanet Systems Science (NExSS) research coordination network (RCN). W.D.S, N.Y.K. and M.N.P. were also supported by a NASA Exobiology grant No. 80NSSC19K0478. J.TB. was supported by the NASA Postdoctoral Program (NPP) award number NPP168014S. N.Y.K. received training support from the NASA Goddard Space Flight Center Training Office to take the Microbial Diversity course at the Marine Biological Laboratory, Woods Hole, MA, USA
Recommended from our members
Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS's Earth system model (ModelE-BiomeE v.1.0)
We developed a demographic vegetation model, BiomeE, to improve the modeling of vegetation dynamics and ecosystem biogeochemical cycles in the NASA Goddard Institute of Space Studies' ModelE Earth system model. This model includes the processes of plant growth, mortality, reproduction, vegetation structural dynamics, and soil carbon and nitrogen storage and transformations. The model combines the plant physiological processes of ModelE's original vegetation model, Ent, with the plant demographic and ecosystem nitrogen processes that have been represented in the Geophysical Fluid Dynamics Laboratory's LM3-PPA. We used nine plant functional types to represent global natural vegetation functional diversity, including trees, shrubs, and grasses, and a new phenology model to simulate vegetation seasonal changes with temperature and precipitation fluctuations. Competition for light and soil resources is individual based, which makes the modeling of transient compositional dynamics and vegetation succession possible. Overall, the BiomeE model simulates, with fidelity comparable to other models, the dynamics of vegetation and soil biogeochemistry, including leaf area index, vegetation structure (e.g., height, tree density, size distribution, and crown organization), and ecosystem carbon and nitrogen storage and fluxes. This model allows ModelE to simulate transient and long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems. Furthermore, BiomeE also allows for the eco-evolutionary modeling of community assemblage in response to past and future climate changes with its individual-based competition and demographic processes
- …