11 research outputs found

    Small RNA, Cyclic-di-GMP and Phenolic Compounds Regulate the Type III Secretion System in Bacterial Phytopathogens

    Get PDF
    Type III Secretion System (T3SS) is an essential virulence factor in many Gram-negative bacterial pathogens. Expression of T3SS consumes large amount of energy. Hence it is tightly regulated by bacteria through several mechanisms. In this work we screened a library of phenolic compounds and found several compounds that dramatically downregulate T3SS in Erwinia amylovora 273. Additionally, the role of small RNA (sRNA) chaperone, Hfq, and a secondary messenger, cyclic-di-GMP in T3SS regulation in Dickeya dadantii 3937 was also examined. Chapter 1 provides a brief overview of the history and virulence mechanisms of two phytopathogens - Erwinia amylovora 273 and Dickeya dadantii 3937. In chapter 2, a chemical library of phenolic compounds was screened. Several compounds inhibited expression of T3SS in E. amylovora 273. trans-4-methoxy cinnamic acid (TMCA) and Benzoic acid (BA) inhibited T3SS expression through HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Additionally, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES) induced T3SS expression. Finally, TMCA and BA inhibited the hypersensitive response (HR) by inhibiting expression of T3SS. In chapter 3, we investigated the role of a second messenger, cyclic-di-GMP in the regulation of T3SS expression in D. dadantii 3937. A PilZ domain protein, YcgR regulated expression of T3SS in a c-di-GMP-dependent manner. A point mutation was created by replacing the crucial arginine residue in the RRxxxR motif of PilZ domain by aspartic acid. This mutation in YcgR altered its ability to regulate T3SS expression. BcsA, another PilZ domain protein positively regulated T3SS. In chapter 4, we examined the role of Hfq in regulation of expression of T3SS. hfq mutant dramatically reduced the expression of T3SS genes such as, hrpA, hrpN and dspE. Hfq controlled T3SS expression by regulating expression of a response regulator, GacA which in turn regulates expression of rsmB. RsmB is an untranslated sRNA that positively regulates expression of the master regulator of the T3SS. hfq mutant also altered the expression of another sRNA, ArcZ that also regulated T3SS. Additionally, Hfq modulated the c-di-GMP levels in D. dadantii. Overall, the study suggested that Hfq regulated T3SS through Rsm system. The mechanism of Hfq regulating the c-di-GMP levels remains to be determined

    Expanded trade: tripartite interactions in the mycorrhizosphere

    No full text
    ABSTRACT Interactions between arbuscular mycorrhizal fungi (AMF), plants, and the soil microbial community have the potential to increase the availability and uptake of phosphorus (P) and nitrogen (N) in agricultural systems. Nutrient exchange between plant roots, AMF, and the adjacent soil microbes occurs at the interface between roots colonized by mycorrhizal fungi and soil, referred to as the mycorrhizosphere. Research on the P exchange focuses on plant–AMF or AMF–microbe interactions, lacking a holistic view of P exchange between the plants, AMF, and other microbes. Recently, N exchange at both interfaces revealed the synergistic role of AMF and bacterial community in N uptake by the host plant. Here, we highlight work carried out on each interface and build upon it by emphasizing research involving all members of the tripartite network. Both nutrient systems are challenging to study due to the complex chemical and biological nature of the mycorrhizosphere. We discuss some of the effective methods to identify important nutrient processes and the tripartite members involved in these processes. The extrapolation of in vitro studies into the field is often fraught with contradiction and noise. Therefore, we also suggest some approaches that can potentially bridge the gap between laboratory-generated data and their extrapolation to the field, improving the applicability and contextual relevance of data within the field of mycorrhizosphere interactions. Overall, we argue that the research community needs to adopt a holistic tripartite approach and that we have the means to increase the applicability and accuracy of in vitro data in the field

    Genomic diversity and organization of complex polysaccharide biosynthesis clusters in the genus Dickeya.

    No full text
    The pectinolytic genus Dickeya (formerly Erwinia chrysanthemi) comprises numerous pathogenic species which cause diseases in various crops and ornamental plants across the globe. Their pathogenicity is governed by complex multi-factorial processes of adaptive virulence gene regulation. Extracellular polysaccharides and lipopolysaccharides present on bacterial envelope surface play a significant role in the virulence of phytopathogenic bacteria. However, very little is known about the genomic location, diversity, and organization of the polysaccharide and lipopolysaccharide biosynthetic gene clusters in Dickeya. In the present study, we report the diversity and structural organization of the group 4 capsule (G4C)/O-antigen capsule, putative O-antigen lipopolysaccharide, enterobacterial common antigen, and core lipopolysaccharide biosynthesis clusters from 54 Dickeya strains. The presence of these clusters suggests that Dickeya has both capsule and lipopolysaccharide carrying O-antigen to their external surface. These gene clusters are key regulatory components in the composition and structure of the outer surface of Dickeya. The O-antigen capsule/group 4 capsule (G4C) coding region shows a variation in gene content and organization. Based on nucleotide sequence homology in these Dickeya strains, two distinct groups, G4C group I and G4C group II, exist. However, comparatively less variation is observed in the putative O-antigen lipopolysaccharide cluster in Dickeya spp. except for in Dickeya zeae. Also, enterobacterial common antigen and core lipopolysaccharide biosynthesis clusters are present mostly as conserved genomic regions. The variation in the O-antigen capsule and putative O-antigen lipopolysaccharide coding region in relation to their phylogeny suggests a role of multiple horizontal gene transfer (HGT) events. These multiple HGT processes might have been manifested into the current heterogeneity of O-antigen capsules and O-antigen lipopolysaccharides in Dickeya strains during its evolution

    A single regulator mediates strategic switching between attachment/spread and growth/virulence in the plant pathogen Ralstonia solanacearum

    No full text
    The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a ΔphcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the ΔphcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the ΔphcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta, PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking ΔphcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, ΔphcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle.Published versio

    Plant-Pathogenic Ralstonia Phylotypes Evolved Divergent Respiratory Strategies and Behaviors To Thrive in Xylem

    No full text
    Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem. Reduction of nitrate, nitrite, and nitric oxide all contribute to the virulence of a model phylotype I strain. However, little is known about the physiological role of the last denitrification step, the reduction of nitrous oxide to dinitrogen by NosZ. We found that phylotypes I and III need NosZ for full virulence. However, strains in phylotypes II and IV are highly virulent despite lacking NosZ. The ability to respire by reducing nitrate to nitrous oxide does not greatly enhance the growth of phylotype II and IV strains. These partial denitrifying strains reach high cell densities during plant infection and cause typical wilt disease. However, unlike phylotype I and III strains, partial denitrifiers cannot grow well under anaerobic conditions or form thick biofilms in culture or in tomato xylem vessels. Furthermore, aerotaxis assays show that strains from different phylotypes have different oxygen and nitrate preferences. Together, these results indicate that the RSSC contains two subgroups that occupy the same habitat but have evolved divergent energy metabolism strategies to exploit distinct metabolic niches in the xylem. IMPORTANCE Plant-pathogenic Ralstonia spp. are a heterogeneous globally distributed group of bacteria that colonize plant xylem vessels. Ralstonia cells multiply rapidly in plants and obstruct water transport, causing fatal wilting and serious economic losses of many key food security crops. The virulence of these pathogens depends on their ability to grow to high cell densities in the low-oxygen xylem environment. Plant-pathogenic Ralstonia can use denitrifying respiration to generate ATP. The last denitrification step, nitrous oxide reduction by NosZ, contributes to energy production and virulence for only one of the three phytopathogenic Ralstonia species. These complete denitrifiers form thicker biofilms in culture and in tomato xylem, suggesting they are better adapted to hypoxic niches. Strains with partial denitrification physiology form less biofilm and are more often planktonic. They are nonetheless highly virulent. Thus, these closely related bacteria have adapted their core metabolic functions to exploit distinct microniches in the same habitat

    Plant-Pathogenic Ralstonia Phylotypes Evolved Divergent Respiratory Strategies and Behaviors To Thrive in Xylem

    No full text
    ABSTRACT Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem. Reduction of nitrate, nitrite, and nitric oxide all contribute to the virulence of a model phylotype I strain. However, little is known about the physiological role of the last denitrification step, the reduction of nitrous oxide to dinitrogen by NosZ. We found that phylotypes I and III need NosZ for full virulence. However, strains in phylotypes II and IV are highly virulent despite lacking NosZ. The ability to respire by reducing nitrate to nitrous oxide does not greatly enhance the growth of phylotype II and IV strains. These partial denitrifying strains reach high cell densities during plant infection and cause typical wilt disease. However, unlike phylotype I and III strains, partial denitrifiers cannot grow well under anaerobic conditions or form thick biofilms in culture or in tomato xylem vessels. Furthermore, aerotaxis assays show that strains from different phylotypes have different oxygen and nitrate preferences. Together, these results indicate that the RSSC contains two subgroups that occupy the same habitat but have evolved divergent energy metabolism strategies to exploit distinct metabolic niches in the xylem. IMPORTANCE Plant-pathogenic Ralstonia spp. are a heterogeneous globally distributed group of bacteria that colonize plant xylem vessels. Ralstonia cells multiply rapidly in plants and obstruct water transport, causing fatal wilting and serious economic losses of many key food security crops. The virulence of these pathogens depends on their ability to grow to high cell densities in the low-oxygen xylem environment. Plant-pathogenic Ralstonia can use denitrifying respiration to generate ATP. The last denitrification step, nitrous oxide reduction by NosZ, contributes to energy production and virulence for only one of the three phytopathogenic Ralstonia species. These complete denitrifiers form thicker biofilms in culture and in tomato xylem, suggesting they are better adapted to hypoxic niches. Strains with partial denitrification physiology form less biofilm and are more often planktonic. They are nonetheless highly virulent. Thus, these closely related bacteria have adapted their core metabolic functions to exploit distinct microniches in the same habitat
    corecore