79 research outputs found

    Challenges in Optimizing Formulations for Multi- Antigen Vaccines

    Get PDF

    Clarithromycin: overview and its current clinical utility in the treatment of respiratory tract infections

    Get PDF
    Upper respiratory tract infection (URTI) is a common reason for medical consultation all over the world. Streptococcus A (Strep A) and other infections can cause sore throat as well as pharyngitis or tonsillitis. It may also result in post-infection sequelae, including acute post-streptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease.  As a result, there is a need for an antibiotic that is effective, easy to administer, has a favorable sensitivity pattern, and preferably has some additional pharmacodynamic properties that complement the basic antibacterial profile. Clarithromycin is a macrolide antibacterial agent with broad-spectrum activity against respiratory pathogens. It is especially active against atypical Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella spp. It is well absorbed and stable at gastric pH. It is metabolized by the cytochrome P450 enzymes and forms 14-hydroxy clarithromycin, which is more active than the parent compound, especially against Hemophilus influenzae. It acts by preventing protein synthesis by binding to the 50S subunit of bacterial ribosomes. In dosages of 500 to 1000 mg/day for 5 to 14 days, clarithromycin is effective in the treatment of community-acquired upper and lower respiratory tract infections in hospital and community settings. It exerts significant anti-inflammatory, immunomodulatory, and post-antibiotic effects. It provides a viable option for the treatment of community-acquired respiratory tract infections, in both children and adults.  

    Evaluation of Critical Quality Attributes of a Pentavalent (A, C, Y, W, X) Meningococcal Conjugate Vaccine for Global Use

    Get PDF
    Towards achieving the goal of eliminating epidemic outbreaks of meningococcal disease in the African meningitis belt, a pentavalent glycoconjugate vaccine (NmCV-5) has been developed to protect against Neisseria meningitidis serogroups A, C, Y, W and X. MenA and X polysaccharides are conjugated to tetanus toxoid (TT) while MenC, Y and W polysaccharides are conjugated to recombinant cross reactive material 197 (rCRM197), a non-toxic genetic variant of diphtheria toxin. This study describes quality control testing performed by the manufacturer, Serum Institute of India Private Limited (SIIPL), and the independent control laboratory of the U.K. (NIBSC) on seven clinical lots of the vaccine to ensure its potency, purity, safety and consistency of its manufacturing. In addition to monitoring upstream-manufactured components, samples of drug substance, final drug product and stability samples were evaluated. This paper focuses on the comparison of the vaccine’s critical quality attributes and reviews key indicators of its stability and immunogenicity. Comparable results were obtained by the two laboratories demonstrating sufficient levels of polysaccharide O-acetylation, consistency in size of the bulk conjugate molecules, integrity of the conjugated saccharides in the drug substance and drug product, and acceptable endotoxin content in the final drug product. The freeze-dried vaccine in 5-dose vials was stable based on molecular sizing and free saccharide assays. Lot-to-lot manufacturing consistency was also demonstrated in preclinical studies for polysaccharide-specific IgG and complement-dependent serum bactericidal activity for each serogroup. This study demonstrates the high quality and stability of NmCV-5, which is now undergoing Phase 3 clinical trials in Africa and India

    The tangency requirement between average revenue and average cost curves

    No full text
    • …
    corecore