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Moving mixed-model assembly lines are used by many companies to assemble 

multiple model types of a particular product. A moving assembly line consists of a 

material movement system that moves jobs at a constant velocity across a series of 

workstations. The variation in the work content of jobs at workstations may result in 

workstation inefficiencies if the jobs are processed through the line in random order. 

This gives rise to the job sequencing problem, which is to determine a job launching 

order, (i.e., the job sequence) that minimizes operational inefficiencies such as work 

overloads. Work overloads occur when a job cannot be processed within the limits of 

a workstation. 

When determining the workstation parameters on a moving assembly line they 

should ideally be set so that the workstation is the minimum length for a given assembly 

line throughput, and zero operational inefficiencies occur when job sequencing is 

performed. Estimating the operational inefficiencies without having to solve a 



 

 

sequencing problem is the topic of this research. This research establishes a discrete 

state Markov chain model to estimate the expected number, and the probability 

distribution of work overloads for a set of jobs launched in random order. The models 

have been tested on a variety of different job sets, and the results indicate that the model 

can accurately estimate the probability of work overloads as a function of workstation 

parameters, and whether job sequencing reduces work overloads to zero. 
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1 INTRODUCTION 

1.1 The Mixed-Model Sequencing Problem 

The job sequencing problem, which is deciding the processing order for a fixed set 

of jobs, can be important with respect to efficiently operating a moving assembly line. 

Today, there can be a wide variety of products assembled on the same assembly line. For 

example, in automotive assembly lines an automobile model may or may not have a 

sunroof, it may have automatic transmission or manual transmission, etc. depending on 

customer preferences.  Because of vast product diversity, it becomes economically 

infeasible for manufacturers to assemble each model variation on a different assembly line. 

In addition, high investments and fixed costs have also compelled companies to use the 

same assembly line to assemble a variety of distinct products. Such assembly lines are 

known as mixed-model assembly lines (MMAL) (Sarker et al. 2001). In other words, a 

MMAL is a production line that assembles in stages, various configurations of a particular 

product. Along with the automobile industry, MMAL’s are common in the electronics 

manufacturing industry, fan manufacturing industry, and are also used for component 

assembly on printed circuit boards  

In the typical moving assembly line, the time a job spends in a workstation is fixed 

and depends on the speed of conveyor (the most common form of job movement in such 

lines). This means that each operator has a limited amount of time to complete the assigned 

tasks on a job before it reaches the end of the workstation. The time required to process 

each job varies depending on its configuration. Complicated jobs will require more 

processing time than simple jobs. Therefore, if complex jobs are launched on the assembly 

line in direct succession then eventually such a launching pattern will cause conveyor belt 

stoppages (if unfinished jobs reach the end of the window) provided that no additional help 

is provided at the workstation. This will reduce line throughput, which often is the primary 

performance measure for the line. 

The specific details of a particular job sequencing problem on a mixed model 

assembly line are in part determined by line balancing, which can be considered one 
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component of designing the assembly line. Line balancing is the assignment of tasks to the 

workstations and strives to maintain equal expected processing time on each workstation. 

These line balancing decisions also dictate the tools and/or machinery needed at the 

workstations (Marengo et al. 2010). Although the expected processing time at each 

workstation is designed to be approximately the same, within a workstation the individual 

jobs have processing times that vary around the expected time. It is this processing time 

variability that gives rise to the job sequencing problem when the assembly line is 

operational.  

 In the job sequencing problem, the objective is to find a specific order for launching 

jobs on the assembly line that results in efficient line operation, which can be measured in 

multiple ways.  As noted earlier if the job processing times on a workstation for multiple 

jobs in a row are high (greater than the expected processing time) then it may lead to 

frequent conveyor stoppages causing throughput losses, or it may require substantial 

additional resources to prevent conveyor stoppages. On the other hand, if the job processing 

times on a workstation for multiple jobs in a row are low (less than the expected processing 

time), then this will result in increased operator idle time and reduce operator utilization 

thereby increasing the cost of assembly. The basic intuitive objective of job sequencing is 

to “smooth” the job processing time across all workstations for cost-efficient production 

(Franz et al. 2014).  

There are two facts that make the job sequencing problem more difficult in practice. 

First, the processing times of tasks are seldom known precisely. Second, the assumed 

product mix used to determine the expected work at each workstation always differs from 

reality.  Much of this uncertainty is handled by buffering with extra time/workstation 

length, but this must be minimized to reduce facility costs.  The result is that in most 

assembly lines job sequencing is really important for a subset of the workstations on the 

line. For these workstations, there may be high job processing time variability (due to 

variable work content of jobs), and the actual processing times may be higher than 

estimated when line balancing was completed. Those workstations where sequencing is 

not needed have low variability in the job processing times, the actual processing times are 
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less than estimated, and variations in individual jobs can be handled within the time buffer 

built into the workstation. 

 

1.2 Assembly Line Description 

This section provides the configuration of the assembly line that is considered in this 

research. First the classifications/types of assembly lines are presented, and then the types 

of job launching disciplines are discussed. Later, the types of workstation boundaries and 

the strategies used to deal with a work overload situation are presented. The assumptions 

are listed and lastly, an illustrative example that resembles to the system being considered 

in this research is presented. 

 

1.2.1 Assembly Line Type 

 

An assembly line can be classified into one of the three categories based on how jobs 

are transferred between workstations as shown in Figure 1. In a moving line, the jobs are 

transferred between the workstations with the help of a transport system such as a conveyor 

system that moves all jobs at a constant velocity. In a paced line, the transport system halts 

when a job enters the workstation window and starts moving after a certain amount of time. 

An unpaced line has temporary storage spaces known as buffers between workstations and 

the operator transfers a completed job to the downstream buffer as soon as it is completed 

and space is available in the buffer (Merengo et al. 2010). This research addresses the 

moving line assembly line workstation. 
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Figure 1: Classification of Assembly Line 

 

1.2.2 Launching Discipline 

 

Jobs are launched on a moving line type assembly line at a rate, which can be fixed 

or variable. In fixed rate launching, jobs are launched after equal time intervals known as 

the cycle time. In variable rate launching, the time interval between job launching is 

modified to reduce inefficiencies such as idle time, the number of incomplete jobs (Wester 

et al. 1964). For mass production, a variable rate launching system is not practical to 

implement (Wild, 1972). Therefore, in this research, fixed-rate launching is considered. 

 

1.2.3 Workstation Boundaries and Work Overload Reaction 

 

Workstations are linked serially through a conveyor system, and these workstations 

can have an open or closed boundary. In a closed boundary workstation, an operator is not 

allowed to cross the workstation boundaries at any time. This type of workstation boundary 

is a result of operations performed at the workstation. For example, 1) tasks to be performed 

in an artificially regulated environment such as heated chambers must be completed before 

jobs leave the chamber, 2) workstations equipped with tools connected to a power supply 

have limited operating range (Scholl 1999). 3) robots employed along workstations have 

limited reach and may collide with other robots beyond boundaries. In this research, a 

closed boundary workstation is considered. 
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Closed workstations give rise to operational inefficiencies such as operator idle time 

and the need for utility worker time. When a job enters the upstream boundary of the 

workstation, the operator starts working on it. The operator moves along with the job 

towards the downstream boundary of the workstation at the conveyor speed. When the 

tasks to be performed on the job are completed, the operator moves towards the next job in 

the direction opposite to conveyor movement. If a job is not available, the operator waits 

at the upstream boundary of the workstation for the next job to arrive. This gives rise to 

operator idle time. If the operator foresees that it is not possible to finish all of the tasks on 

the job, then they skip the job and walk back towards the next job, or waits for the next job 

to arrive. Such a reaction to imminent work overload is called the skip policy (Boysen, 

2011). The incomplete work (which needs to be completed) is known as work overload or 

utility work and the time required to complete this incomplete work is known as utility 

time. 

 

1.2.4 Assumptions 

 

The following are the assumptions made in this research: 

• Help is always available to perform utility work within the workstation boundaries. 

This ensures completion of the job by the time it leaves the workstation so that the 

starting times of activities in the succeeding workstations are not obstructed.  

• The operator moves with an infinite velocity while returning to a succeeding job 

and starts working on the job as soon as they meet the job. This assumption is made 

because the operator movement speed is generally fast compared to the conveyor 

speed.  

• No setup time is needed when the operator switches between different job types. 

This is the time required to prepare the workstation when different job types arrive 

at the workstation, for example, setting up fixtures and jigs, setting up a station for 

applying a new color, etc. 
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• Workstations have one dedicated operator. This operator and the utility worker can 

work simultaneously on two consecutive jobs in a workstation without interfering 

with each other’s activities. 

• All job types can be completed within a workstation when worked on from the 

upstream boundary. This ensures that utility work is needed only because of 

sequencing, i.e., when multiple work intensive jobs are launched in succession and 

not because of a job cannot be completed in spite of being worked on from the 

upstream boundary.  

• The workstation length is not greater than twice the cycle time. 

• There are no unexpected machine breakdowns and no material shortages. 

• The demand for each job type is known, and it does not change over time. 

• The operator is never idle when work is available. 

• The conveyor moves at a constant velocity. 

• The processing times of the job types are known, and each job type has a different 

processing time. 

 

Figure 2 is an illustration of the mixed model assembly line considered in this research. 
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Figure 2: Mixed-Model Assembly Line 

 

1.2.5 Illustrative Example - 1 

 

The following example demonstrates the assembly line configuration and the operator 

decision-making that is addressed in this research. 

Consider a mixed-model assembly line with a single workstation. Let the speed of 

the conveyor be one distance unit per time unit so that length units and time units can be 

used interchangeably. The length of the workstation is 8 distance units, i.e., a job will spend 

8 time units in this workstation before it leaves the workstation. The cycle time is 4 time 

units which means a job will arrive at the workstation after every 4 time units. Assume 

three different job types A, B and C having processing times and demand as shown in Table 

1. The sequence of launching jobs on the conveyor is A, B, C, C.  
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Table 1: Processing Times and Demands of Jobs for Illustrative Example -1 

Job 

Type 

Processing 

Time(Time Units) 
Demand 

A 2 1 

B 5 1 

C 7 2 

 

  

Figure 3: Operator Movement Diagram for Illustrative Example - 1 

 

The operator movement diagram is shown in Figure 3. The diagonal lines indicate 

the operator is working on a job, the horizontal dashed lines indicate the upstream 

movement of the operator after completing a job, and the vertical dashed line indicates the 

downstream boundary of the workstation. Assume that the first job, i.e., job type A is 

launched at 0 time units and enters the workstation at 0 time units.  
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The operator starts working on job type A as soon as it enters the workstation and 

works on it for 2 time units. The operator is located 2 distance units (Figure 3, point a) 

away from the start of the workstation after completing job type A. The operator then moves 

towards the upstream boundary of the workstation at infinite velocity and waits for next 

job. Figure 3 points b-c indicates that the operator waits at the upstream boundary for the 

next job to arrive (idle time). At 4 time units (Figure 3 point c), the next job arrives and the 

operator starts working on this job type B and completes it at 9 time units (Figure 3 point 

d). Figure 3 points c-d shows the processing of the job type B. In the meantime, a job type 

C enters the workstation at 8 time units and is 1 distance units away from the start of the 

workstation at 9 time units when work begins on the job. Figure 3 points d-e shows 

movement of the operator towards job type C. The operator works on the job type C for 7 

time units and is located at the downstream boundary after completing it (Figure 3 point f). 

The next job i.e. the job type C enters the workstation at 12 time units and is located at 4 

distance units from the start of the workstation at 16 time units. The operator skips this job 

at 16 time units because it cannot be completed within the allowable work area (skip 

policy). A utility worker then processes this skipped job and the operator waits at the start 

of the workstation for the next job. 

1.3 Research Motivation and Objective 

The existing literature on the mixed-model sequencing problem primarily deals with 

finding an efficient sequence or launch order by applying numerous optimization search 

procedures. These search procedures are then validated by assuming some line and model-

mix characteristics (data). Although the search procedures provide performance 

improvement for the respective assumed data, it is implicitly assumed that for a given line 

and model-mix characteristics, operational inefficiencies (work overload) always or most 

likely will occur and applying search procedures will reduce or eliminate such 

inefficiencies. Estimating operational inefficiencies for a random launch sequence before 

solving the sequencing problem will be beneficial because if it is unlikely to have 

operational inefficiencies, then the computational effort of solving sequencing problem can 

be avoided. This research helps in estimating such operational inefficiencies for a given 
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workstation length and model-mix, thereby filling this gap in literature. To the best of our 

knowledge, this work is also the first in this area. 

For demonstration purposes, consider two simple examples, Problem A and Problem 

B with workstation length 12. The demands and processing times of the job types are as 

shown in Table 2 and the operator movement diagram for Problem A and Problem B is 

shown in Figure 4 and Figure 5 respectively. The cycle time is 10 time units in both 

examples. In Problem A, there are six possible job launching sequences and sequences (A, 

B, A, B), (A, B, B, A) and (B, A, B, A) result in no work overload situations, whereas in 

Problem B, it is impossible to have a work overload situation. Therefore, it is important to 

solve the mixed-model sequencing problem only for Problem A because a random 

launching sequence has a large chance of having a work overload.  

 

Table 2: Demand and Processing Times - 1 
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Figure 4: Operator Movement Diagram-Problem A 

 

Figure 5: Operator Movement Diagram - Problem B 
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There are two main objectives of this research. First, to develop a model that can 

estimate the expected number, and the probability distribution for the number of work 

overload occurrences for a set of jobs launched in random order on a mixed model 

assembly line workstation (as a function of the workstation parameters, product mix, and 

characteristics of the job processing times). Second, use the model to determine whether 

the solution to the job sequencing problem can reduce the number of work overload 

occurrences to zero.  

 

1.4 Research Outline 

This research is organized as follows. In Chapter 2, the background information and the 

research relevant to the job sequencing problem is presented. In Chapter 3, the development 

of a mathematical model that can estimate work overload occurrences and the validation 

of the results generated by the model is presented. Chapter 4 presents the model results for 

multiple test cases and an application of the mathematical model. In this chapter the 

accuracy of the model results is also discussed. Finally, in Chapter 5 the conclusions from 

this research are summarized and the scope of future work is presented. 
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2 LITERATURE REVIEW 

This chapter is organized into two parts. The first part provides relevant background 

information on the connection between line balancing and the short-term problem of 

finding a good product launching sequence. This is followed by classification of the line 

balancing problem. In the second part of this chapter, a classification and review of relevant 

mixed-model sequencing research is presented.  

2.1 Background Literature 

Two main decision problems arise over different planning horizons while managing a 

mixed-model assembly line. The first problem, which is a medium time horizon (one year) 

problem, is called the mixed-model assembly line balancing problem (ALBP). Before 

installing a mixed-model assembly line, the line length, the number of workstations and 

the production rate should be determined. Assignment of tasks to the workstation is another 

important aspect to be considered that dictates the installation of equipment and tools 

across workstations. All these decisions are part of the ALBP. The solution to this medium 

time horizon problem also determines the division labor across workstations.  

The second problem, which is a short-term or operational problem, is called the model 

sequencing problem (MSP). As mentioned earlier, MSP deals with determining a sequence 

of launching jobs for a short-term planning period that optimizes some performance 

measure. These performance measures correspond to inefficiencies arising due to variation 

in workstation utilization. The MSP is often solved on a daily or weekly basis. 

Inputs for the MSP include operational characteristics of the assembly line such as 

workstation length, cycle time, processing times of jobs (dependent on task assignment) 

that are determined by ALBP. Therefore, although both problems arise in different 

planning horizons, they are strongly related to each other. The quality of an MSP solution 

directly depends on the quality of ALBP solution. The precise model-mix is seldom known 

when the line is balanced. Therefore the ALBP solution for particular planning period may 

not be efficient for other periods. Both, the MSP and ALBP have to be solved separately 

because of their different planning horizons.  
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2.1.1 Assembly Line Balancing Problem 

 

This section provides a brief classification of the ALBP and identifies the type of ALBP 

that needs to be solved before addressing the MSP. 

Assembly line balancing is the first step in designing an assembly line. A vast 

literature exists on the assembly line balancing problem (ALBP) which is assigning tasks 

to each workstation according to the precedence relations of operations. Becker et al. 

(2006) and Scholl et al. (2006) provide a comprehensive survey of various forms of ALBP. 

 

Figure 6: Classification of the Line Balancing Problem 

 

Figure 6 shows the classification of the line balancing problem. The majority of the 

ALBP literature deals with modeling and solving the simple assembly line balancing 

problem (SALBP) which assumes a single job type (Jackson et al. 1956, Bowman et al. 

1960 and Baybars et al. 1986). This SALBP can be categorized into four types based on 

the objective function. For SALBP-1, the goal is to minimize the number of workstations 

for a given production rate while SALBP-2 maximizes production rate for a given number 

of workstations. SALBP-E deals with minimizing the number of workstations and 
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maximizes production rate simultaneously whereas SALBP-F evaluates the feasibility of 

the given assembly line.  

 

 

Figure 7: Assembly line type and associated balancing problem 

 

Characteristics of the assembly line system determine the type of line balancing 

problem. The general assembly line balancing problem (GALBP), another version of the 

ALBP is obtained by relaxing one or more assumptions of the SALBP. Figure 7 shows 

different types of assembly lines and the associated line balancing problem. For example, 

an assembly line used for the production of two or more job variants (no setup times) is 

known as the mixed-model assembly line, and the associated balancing problem is the 

mixed-model assembly line balancing problem (MALBP) (Becker et al., 2006). This 

research requires the solution of the MALBP. Such a MALBP can be further categorised 

into four categories similar to that of SALBP (Scholl, 1999).  

The research in this thesis assumes that the MALBP is solved and the solution is 

already known. In other words, it is assumed that the tasks to be performed in each 

workstation and the cycle time is known.  

2.2 Literature Review 

 

2.2.1 Mixed-model Sequencing Problem 
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This section presents a review of existing literature on the MSP. Kilbridge et al. 

(1963) first introduced the MSP, and since then various approaches to obtain an efficient 

sequence were proposed. Based on these approaches the model sequencing literature can 

be broadly separated into three categories as described by Boysen et al. (2011). Refer to 

Figure 8. 

 

Figure 8: Classification of Model Sequencing Problem 

 

The first approach is known as mixed-model sequencing. This approach focuses on 

determining the sequence of launching jobs such that some time related or cost related 

objective is optimized by taking into consideration various operational characteristics of 

assembly line, for example, workstation boundaries, job launching interval, job processing 

times and worker movements. The literature based on time-related objectives mainly 

consider minimizing total work overload, total operator idle time or setup times. Whereas, 

the literature on cost related objectives mainly considers minimizing total labor costs by 

taking into account workstation operator wages/utility worker wages and setup costs.  

The second approach is known as car sequencing. The mixed-model sequencing 

approach requires significant effort to collect data of various operational characteristics as 
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mentioned before. By eliminating such data collection, the car sequencing approach aims 

to avoid work overload by controlling the succession of labor-intensive jobs. A set of 

sequencing rules are formulated, and a job launching sequence adhering to these rules is 

determined. For example, a sequencing rule of the form 𝐻𝑜: 𝑁𝑜 indicates that out of 𝑁𝑜 

subsequent sequence positions, at most 𝐻𝑜 jobs can be labor-intensive to avoid work 

overload occurrence.  

The third approach is known as level scheduling. Raw material supplied at 

workstations are expensive because a large number of different parts are stored. (Scholl 

1999). The first two approaches do not consider this material supply at the workstations. 

The level scheduling approach aims at reducing inventory levels of material stocks by 

implementing the just-in-time system. The main idea here is to minimize the deviation 

between ideal and actual production rates so that parts are supplied only when needed. 

The research in this thesis deals with the first approach, therefore, the literature is 

mainly focused on mixed-model sequencing approach. The mixed model sequencing 

problem can be further separated into two main categories based on the workstation 

boundary assumptions. In the first category, authors search for an efficient sequence that 

minimizes the workstation length or throughput time. This approach determines the overall 

production facility dimensions. In the second approach, it is assumed that the workstation 

lengths (facility dimensions) are known, and the authors determine an efficient sequence 

that minimizes operational inefficiencies for various time-related objectives such as 

operator idle time, utility work, setup time and conveyor stoppage time. More detailed 

descriptions on the two approaches are provided in section 2.2.1.1 and 2.2.1.2. 

 

Reaction to Imminent Work Overload Occurrence  

 

Three policies are observed in the literature to deal with an overload occurrence as follows:  

 

Okamura et al. (1979), Xiaobo et al. (1994), (1997), (2000) and Celano et al. (2004) 

address mixed-model assembly line in a Toyota production system that uses just-in-time 

and “Autonomation” philosophy to tackle work overload occurrence. Based on this 
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concept, it is required that 100% defect-free jobs are moved between workstations so that 

operations in subsequent workstations are not disturbed. To ensure this, during a work 

overload occurrence, the workstation operators are given the ability to stop the conveyor 

until the job is completed. When a work overload situation occurs at a workstation, the 

whole assembly line is stopped which may give rise to operator idle time at subsequent 

workstations. Celano et al. (2004) describes various operator assistance policies wherein 

help is provided to the workstation operator stopping the conveyor system. 

Another approach of addressing work overload occurrence is using utility workers 

as described by Yano et al. (1991) and Yano et al. (1989). Whenever a work overload 

occurrence threatens, the workstation operator calls a utility worker to assist him/her so 

that the job is completed within the workstation boundaries. When the workstation operator 

and utility worker work side by side, it is assumed that the processing rate is doubled, i.e. 

the time required to process the remaining tasks of the job is reduced to half. The utility 

worker is called at the point in time such that the job is completed at the downstream 

boundary. Boysen et al. (2011) terms this policy as the “side-by-side policy”, and describes 

drawbacks of this policy. The operator and utility worker may obstruct each other’s tasks 

when working on the same job, and if the job is small, then it cannot be processed jointly 

due to space constraints. It is also difficult to figure out when to call a utility worker, and 

it is unrealistic to assume that a utility worker arrives just when called. Tsai et al. (1995) 

assumes that the workstation operator leaves a job only after completing it or when he/she 

reaches the downstream boundary of the workstation. The unfinished job tasks are then 

completed by the utility worker outside the workstation boundaries. 

Boysen et al. (2011) introduces the skip policy that is employed by most major 

European car manufacturers. A group of workers and a group leader is assigned to a section 

of assembly line consisting of multiple workstations. The group leader (utility worker) is 

cross-trained to perform all tasks within his/her section of the assembly line. If a 

workstation operator foresees that, the job cannot be completed within the workstation 

boundaries, they skip the job. The utility worker processes this skipped job as soon as it 

enters the workstation. 
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Launch Disciplines 

 

Kilbridge et al. (1963) describes two types of launching system. Fixed rate launching 

(FRL) and variable rate launching (VRL). As mentioned earlier, in FRL the time interval 

between job launches remains constant (cycle time c). After every c time units, a job enters 

the workstation and another leaves the workstation. This time interval is equal to the 

weighted average of all job processing times across all workstations. The jobs are equally 

spaced along the assembly line. For VRL, the launch interval for the ith job in the launching 

sequence is equal to the operating time for the (i-1)th job on the first workstation. VRL 

ensures that the operator on the first workstation starts working on ith job in a sequence as 

soon as (i-1)th is completed, thus, reducing operator idle time. VRL results in different 

distance between jobs. Dar-El et al. (1978) mentions that for a closed workstation, though 

there is no evidence of VRL being better than FRL, FRL is more likely to be used because 

it is suitable for various conveyor system configurations such as overhead and tow-line.  

 

2.2.1.1 Fixed Line Length Sequencing Problem 

 

This section summarizes a line of literature that determines an efficient job launching 

sequence to minimize operational inefficiencies by assuming fixed workstation lengths. 

The most common performance measures optimized here are the risk of conveyor stoppage 

and work overload (total work overload measured in terms of remaining processing times 

of unfinished jobs or conveyor stoppage time or number of work overload occurrences).  

Okamura et al. (1979) presents a formulation to solve the mixed model sequencing 

problem by minimizing the risk of stopping the conveyor. In this research, the conveyor 

stops on the occurrence of utility work, and it directly affects the plant efficiency. It is 

assumed that the assembly line is balanced and the workstation lengths are known. 

Processing times of jobs are rarely deterministic, and there is always uncertainty associated 

with it. To deal with the system variability and avoid conveyor stoppages, the authors 

suggest determining a practically acceptable sequence rather than an optimal sequence. 

The farther the job completion points from the downstream boundary of the workstation, 
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the greater is the possibility of absorbing fluctuations in processing times of jobs within 

the workstations. Therefore, they develop a heuristic procedure to find a sequence of jobs 

that has the farthest work completion point (from the upstream boundary) closest to the 

upstream boundary. After assessing the performance of their heuristic on assumed data, 

they conclude that the heuristic method shall give an optimal or near-optimal sequence that 

minimizes the probability of conveyor stoppage.  

Yano et al. (1991) et al. determines the sequence of jobs that minimizes the total work 

overload for a paced mixed-model assembly line having a large number of job types. In 

this research, it is assumed that the line is balanced. Work overload refers to the amount of 

work left unfinished when the job leaves the workstation. Addressing the problem of 

scheduling work on jobs in a workstation, the authors prove that a nonpreemptive first-

come, first-served policy yields the best solution for a given sequence. This means that 

within a workstation, the operator should process jobs in the same sequence as they arrive 

and the operator should stop working on a job only after finishing it or if he/she reaches 

the downstream boundary of the workstation. First, formulas for estimating work overload 

are developed and then procedures to find optimal or near-optimal sequence are described. 

For a single workstation, the authors introduce a concept known as regeneration to be used 

to derive an optimal sequence. Regeneration means launching a certain number of labor-

intensive jobs (which will move operator towards the downstream boundary of the 

workstation) followed by a certain number of simple jobs (which will bring operator back 

towards the downstream boundary of the workstation). Such a repetitive (regenerative) 

sequence that minimizes work overload for a single workstation can be derived by solving 

a nonlinear integer problem provided by the authors. For multiple workstations, a heuristic 

procedure is developed to find a near-optimal sequence adhering to the regeneration 

property. A 55% reduction (average) in work overload is reported by using this heuristic 

procedure for an assembly line of a major automobile company. This research can also be 

used for designing workstation lengths by estimating the effect of workstation length on 

work overload. 

     Okamura et al. (1979) considers the problem of mixed-model sequencing, 

however, they do not take into consideration the occurrence of conveyor stoppages. Xiaobo 
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et al. (1994) develops a method to find an optimal sequence of launching jobs to minimize 

the conveyor stoppage time in a just-in-time assembly line. In a just-in-time assembly 

system, the operators have the power and responsibility to stop the conveyor when they 

fail to complete their operations within their workstations (Monden 1993). Such line 

stoppages affect operations at other workstations giving rise to operator idle time. They 

first define lower and upper bounds for conveyor stoppage time and operator idle time and 

then devise branch-and-bound method to solve the sequencing problem. Xiaobo et al. 

(1997) proposes a simulated annealing method to solve the same but large-scale problem 

that gives a good sub-optimal solution. Xiaobo et al. (2000) formulates a heuristic 

procedure for solving the same sequencing problem by considering the operator upstream 

movement times that were ignored in Xiaobo et al. (1994) and Xiaobo et al. (1997). 

Boysen et al. (2011) introduces a new approach to deal with imminent work overload 

known as skip policy that is common in European car manufacturers. All previous research 

assumed side-by-side policy to tackle work overload occurrence. As mentioned before, in 

skip policy, before working on a new job, the workstation operator calls a utility worker if 

he/she predicts that the new job cannot be completed with the workstation boundaries. The 

utility worker then exclusively works on this job from the upstream boundary of the 

workstation whereas the workstation operator skips it and moves toward the succeeding 

job. A mathematical model is formulated to find a job launching sequence that would 

minimize the number of work overload occurrences instead of the amount of work 

overload. To find the optimal sequence, branch-and-bound and heuristic search procedures 

are proposed which are then tested on a newly generated data set. Using the same data, the 

skip policy and side-by-side policy were compared to check which policy is more 

economically efficient. Results indicate that if setup time (time required to interrupt 

ongoing work, walk towards the workstation, obtain information about the job to process) 

of utility workers is considered, the skip policy is superior to the side-by-side policy. 

 

 

2.2.1.2 Variable Line Length Sequencing Problem 

 



22 

 

 

This section summarizes various time and cost related objectives considered by researchers 

and the methodologies adopted to solve the sequencing problem. This line of research 

assumes that the workstation length can be modified. The main idea in this line of literature 

is to determine workstation dimensions such that the workstation operator is never idle and 

no utility work is needed, in other words, operator interference is avoided. Concepts such 

as minimum part set (MPS) and start schedule are also introduced in this section. 

Dar-El et al. (1975) presents the sequencing problem with an objective to minimize 

overall assembly line-length for zero operator idle time and utility work. In this research, 

it is assumed that the solution for the MALBP is known. The authors develop a heuristic 

algorithm to find a job sequence that minimizes the line length for both open and closed 

workstations. The heuristic starts with the lower bound for the length of the workstation 

and uses a selection heuristic to sample jobs for the sequence. If the selected job satisfies 

the acceptance heuristic, it is added in the sequence otherwise next highest ranking job 

according to the selection heuristic is tried. If no job satisfies the acceptance heuristic, the 

workstation length is incremented, and the same procedure is repeated. Based on the 

results, the authors conclude that the heuristic algorithm minimizes over all line length for 

no operator interference and cautions that this derived minimum line length depends upon 

the quality of MALBP solution. The authors also recommend the use of open boundary 

workstations for efficient utilization of space wherever possible. 

Dar-El et al. (1977) presents a two-step algorithm to determine an optimal sequence 

that minimizes overall line length for zero operator idle time. This research assumes that 

the MALBP is solved i.e. the line is balanced and considers closed workstations. Starting 

from a minimum workstation length (similar to Dar-El et al. (1975)) the first step algorithm 

finds sequences of jobs for which the starting points and completion points coincide (cycle 

sequence). If no sequence exists then the workstation length is increased, and the search is 

repeated. Step two finds the combination of cycle sequences that satisfy the total demand 

by solving the integer program. If optimal solution is not found, then the workstation length 

is increased, and cycle sequences are regenerated. The authors conclude that the algorithm 

will always generate an optimal sequence only if the line is balanced. This algorithm can 

be used to design new mixed model assembly lines. 
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 Bard et al. (1992) provides a mathematical framework to find sequences that 

minimize line length and throughput time for various MMAL configurations whereas 

previous literature was entirely focused on developing heuristic procedures, which applied 

to limited MMAL configurations. This research assumes that line balance is achieved. If 

the total demand of job types is represented by a vector of integers (d1, d2,…, dm) where dm 

represents demand for model type m and if q is the greatest common divisor of all the 

elements of the vector then, the vector (
𝑑1

𝑞
,

𝑑2

𝑞
, … ,

𝑑𝑚

𝑞
) is called minimum part set (MPS). 

To simplify the computations and reduce the complexity of the problem the authors obtain 

a sequence for the MPS and this sequence is repeated q times until demand is satisfied. The 

authors describe two operator working schedules. Early start schedule, wherein the 

operators wait for a job to arrive and start immediately when jobs enter workstations. This 

may increase operator idle time. Late start schedule, wherein operators start working when 

a sufficient amount of work is available in the workstation. This may avoid operator idle 

time but increase workstation length. The authors formulate six mathematical models for 

different combinations of four parameters as follows 1) Objective (Minimize line length or 

Minimize throughput time) 2) Schedule (Early start or Late start) 3) Workstation 

boundaries (Open or Close) 4) Launching rate (Fixed or Variable). The authors then 

perform various tests to study the solution of the mathematical models. For fixed rate 

launching, closed workstations and minimizing line length objective the results indicate a  

reduction in line length for an early start schedule as compared to a late start schedule 

however, this yielded increased throughput time and operator idle time. A similar trade-off 

is observed between line length and operator idle time when the job launching discipline 

is switched. Use of variable launching rate increased the complexity of the problem and 

resulted in reduced facility size but increased operator idle time for both objectives. The 

authors concluded that both objectives, minimize line length and minimize throughput time 

were always within 5% of each other i.e., both objectives generated almost the same results. 

 Sarker et al. (1998) developes a mathematical model to minimize total cost incurred 

due to operator idle time and utility time for a MMAL with optimal launch rate (FRL), 

workstation length and job sequence. Two separate mathematical models are developed for 

both open and closed workstations. The authors mention that generally, unit utility time 
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cost is greater than unit idle time cost because utility work requires extra labor and also 

incur a quality cost. For assumed data, optimal line parameters are obtained by solving the 

mixed-integer programming model for open and closed workstations. It found that 

minimum total cost for the open workstation assembly line is less than closed workstation 

line having the same parameters. The authors also investigated the effects of various line 

parameters on total cost, and the results led to the following conclusions: Launch interval, 

workstation length, and job launching sequence affect the system throughput. When the 

launching interval is increased, the system throughput rate increases but the operator 

utilization reduces. The launching rate does not affect the optimal solution. Up to a certain 

assembly line length, the total cost incurred decreases and open workstations are more 

beneficial but, beyond it, the total cost cannot be reduced, and it is better to use closed 

workstations.  

 To the best of our knowledge, no literature exits on estimation of operational 

inefficiencies for a random job launch sequence and therefore it is assumed that this 

research is the first of its kind.   
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3 METHODOLOGY 

The question this thesis addresses is: What is the distribution of work overload 

occurrences for a set of jobs launched down an assembly line in random order, and can job 

sequencing reduce work overload occurrences to zero? This question can be answered by 

estimating the number of work overload occurrences for all possible job launching 

sequences and then calculating the probability of getting a certain number of work overload 

occurrences. However, it becomes impractical to evaluate all possible job launching 

sequences when the number of possible  sequences is large. The number of possible 

sequences in which jobs can be launched down an assembly line depends upon the total 

number of jobs to be launched in a planning period. For example, if the number of jobs to 

be launched are 100, then there are 100! possible sequences or in other words 100! possible 

ways of launching those 100 jobs which is a 158 digit number. Therefore, it becomes 

computationally impractical to evaluate all 100! sequences in terms of the number of work 

overload occurrences they can create and thus, predicting the number of work overload 

occurrences by brute force computation becomes impossible when the number of jobs to 

be launched is large. 

 In this section the development of a mathematical model to estimate the probability 

distribution of the number of work overload occurrences for a set of jobs launched down 

an assembly line workstation in random order is presented. This chapter consists of two 

main sections. Section 3.1 focuses on the formulation of the mathematical model that 

approximates the probability distribution of the number of work overload occurrences. 

Section 3.2 presents the methodology used to determine the same probabilities 

computationally. The computed probabilities are then used for validating the results 

generated using the mathematical model. Notation used in this chapter is presented in Table 

3. 

Table 3: Notation Summary 

Notation Description 

M Number of job types (index m = 1, 2, …,M) 

𝑑𝑚  Proportion of demand that is for model m during the planning period 

C Cycle time 
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Notation Description 

L Length of the workstation (distance units) 

N Number of jobs in the sequence (index n = 1, 2, …, N) 

𝑃𝑇𝑚 Processing time of job type m 

𝑃𝑇(𝑛) Processing time for the job type that is nth in a sequence of jobs. 

𝑃𝑇max Maximum processing time ( max {𝑃𝑇𝑚}) 

𝑃𝑇𝑚𝑖𝑛 Minimum processing time ( min {𝑃𝑇𝑚}) 

𝑠𝑛 Starting position of the workstation operator for the 𝑛𝑡ℎ  job 

𝑆𝑛 Completion position of the workstation operator for the 𝑛𝑡ℎ   job 

V Velocity of the conveyor (distance units/time unit) 

 

3.1 Determining Work Overload Probabilities Mathematically 

In this research, the probability of a certain number of work overload occurrences is 

calculated using three steps. In step one, a discrete state Markov chain model is developed, 

in step two, the Markov chain model is transformed into a smaller Markov chain model 

known as macrostate Markov chain model and lastly, in step three, the probabilities are 

calculated using a formula that can be derived from the macrostate Markov chain model. 

This section has three main parts. Section 3.1.1 presents a Markov chain model applicable 

to any given mixed-model assembly line workstation similar to that being referred to in 

this research. The states of this Markov chain are then aggregated into two states, to form 

a macrostate Markov chain. The need for this aggregation and the aggregation procedure 

is elaborated in Section 3.1.2. Finally, Section 3.1.3 presents the formulas that can be used 

to determine the probability distribution of the number of work overload occurrences. 

 

3.1.1 Formulating the Markov Chain Model 

 

This section presents how the system considered is modeled as a discrete time Markov 

chain, and it is divided into four subsections. Section 3.1.1.1 explains the nature of the 

work completion points and provides justification for considering transitions of work 
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completion points as a Markov process. The state space for the Markov chain model is 

defined in Section 3.1.1.2. Section 3.1.1.3 presents a formulation for the transition 

probability matrix of the Markov chain model, and lastly, Section 3.1.1.4 explains the 

existence of the limiting probabilities for the discrete state Markov chain model.  

 

3.1.1.1 Job Completion Points 

 

Let 𝑆𝑛 indicate the distance the 𝑛𝑡ℎ job in the sequence is from the upstream 

workstation boundary when all job tasks are completed. Let 𝑠𝑛 indicate the starting position 

of the operator for the same job. It is assumed that 𝑠1 = 0. That is, the operator is waiting 

at the upstream workstation boundary for the first job in the sequence. After working on 

the 𝑛𝑡ℎ job for 𝑃𝑇(𝑛) time units, the job will be located at 𝑆𝑛 = 𝑠𝑛 + V *𝑃𝑇(𝑛) distance units 

from the upstream boundary where the subscript (n) denotes the model type of the 𝑛𝑡ℎ job 

in the sequence. To simplify V = 1 distance unit/time unit, and the terminating position for 

the 𝑛𝑡ℎ job will be 𝑆𝑛 = 𝑠𝑛 + 𝑃𝑇(𝑛). When 𝑆𝑛 ≤ L the workstation operator completes the 

job and then walks C distance units with an infinite velocity to the next job, or walks less 

than C distance units and waits at the upstream boundary for the next job so that 𝑠𝑛+1 = 

max{𝑆𝑛 − 𝐶, 0}. When Sn > L (work overload occurs) the workstation operator will skip 

job n since it cannot be completed within the workstation boundaries and 𝑠𝑛+1 = 0 

(assuming 2C > L, which implies there is never more than two jobs in a workstation at any 

time).  Figure 9 shows the transitions of work starting and completion points.  
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Figure 9: Job Starting and Completion Points 

For purposes of exposition it will be assumed that the cycle time and process times for 

various job types are all integer values. This is not limiting since a single integer unit may 

represent different time units so that actual cycle times and process times can be closely 

approximated.  

 

3.1.1.2 The Markov Chain Model 

 

Consider an infinitely long sequence of jobs that are to be processed on a 

workstation with length 𝐿 and cycle time 𝐶. The number of different job types in the 

sequence is finite (equal to 𝑀), and the proportion of each job type is fixed and 

known( 𝑑𝑚). The processing times for each job type are assumed to be constant integer 
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values and known. Then the stochastic process {𝑆𝑛,  n = 1,2 3, …} is a discrete state 

Markov chain, where the state is the work completion point 𝑆𝑛 for the 𝑛𝑡ℎ job in the 

sequence. The state space is discrete and finite since the process times and cycle time are 

an integer number of time units, and the number of job types is finite. The stochastic 

process {𝑆𝑛, n = 1,2 3, …} is a Markov chain since it satisfies the Markov property: 

𝑃{𝑆𝑛+1 = 𝑗|𝑆𝑛 = 𝑖, 𝑆𝑛−1 = 𝑖𝑛−1, ⋯ , 𝑆1 = 𝑖1} =  𝑃{𝑆𝑛+1 = 𝑗|𝑆𝑛 = 𝑖}. since the 

completion point of the 𝑛 + 1𝑡ℎ  job solely depends upon processing time of the 𝑛 + 1𝑡ℎ 

job and the completion point of the 𝑛𝑡ℎ  job. The Markov chain is homogeneous (stationary) 

since the proportion of job types is constant. 

 The smallest value possible for a job completion point 𝑆𝑛 occurs when the 

workstation operator starts working on a job type that has the smallest processing time 

when it enters the upstream boundary of the workstation.  

The largest possible value for a job completion point  (if the operator stays with the 

job until it completes) occurs when the operator finishes the 𝑛𝑡ℎ  job at the downstream 

boundary of the workstation and 𝑃𝑇(𝑛+1) = 𝑃𝑇𝑚𝑎𝑥 . Therefore, the state space for the 

Markov chain model is, 

 

{State Space} = {𝑃𝑇𝑚𝑖𝑛, 𝑃𝑇𝑚𝑖𝑛 + 𝑧, 𝑃𝑇𝑚𝑖𝑛 
+2z, …., L – C +𝑃𝑇𝑚𝑎𝑥} 

 

Where, z is the greatest common divisor of C and all process times. For most data sets z 

=1. 

All states having values greater than the workstation length are work overload states 

where a utility worker completes the job tasks. A transition of the Markov chain into any 

of the work overload states indicates a work overload occurrence. The following example 

illustrates the Markov chain state model for a given mixed-model assembly line 

workstation and product mix. 

 

Illustrative Example 2 
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Consider a mixed-model assembly line workstation. Let the cycle time be 10 time units 

and four job types are launched down the assembly line in a random sequence with 

processing times as shown in Table 4.  Let the length of workstation be 13 time units. 

Table 4: Processing Times of Job Types 

Job 

Type 

Processing 

Time(time units) 

Proportion in 

Demand 

A 9 0.25 

B 10 0.25 

C 11 0.25 

D 12 0.25 

 

Here,  

𝑃𝑇𝑚𝑖𝑛 =  PTA 

=  9 

L – C +𝑃𝑇𝑚𝑎𝑥 =  L – C + PTD 

=  15 

z =   Greatest common divisor of PTA, PTB, PTC, PTD and C 

=   1 

{State Space} =   {𝑃𝑇𝑚𝑖𝑛, 𝑃𝑇𝑚𝑖𝑛 + 𝑧, 𝑃𝑇𝑚𝑖𝑛 
+2z, …., L – C +𝑃𝑇𝑚𝑎𝑥} 

=  {9, 10, 11, 12, 13, 14, 15} 

 

The smallest state value possible for 𝑆𝑛 is 9 and it occurs if the operator starts working on 

job type A from the upstream boundary of the workstation. The largest possible state value 

for 𝑆𝑛+1is 15 and it occurs if the 𝑛𝑡ℎ job is completed at the upstream boundary of the 

workstation and the 𝑛 + 1𝑡ℎ job is the most work-intensive job (job type D), i.e. if the work 

completion point of 𝑛𝑡ℎ  job is 13, the operator walks 10 distance units towards the upstream 

boundary of the workstation (cycle time) and starts working on the 𝑛 + 1𝑡ℎ job from 3 so 

that the 𝑛 + 1𝑡ℎ job is completed at 15. The smallest possible distance (if not zero) between 
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adjacent work completion points is one i.e. z = 1. Therefore, the state space for the given 

system is {9, 10, 11, 12, 13, 14, 15}.  

 

3.1.1.3 Markov Chain Transition Probability Matrix  

 

The next step is to build a transition probability matrix. The transition probability 

for moving from state i to state j in one time unit (job) is determined from the probability 

of observing a particular job processing time (determined by job type), and the position of 

the job in the workstation when processing starts (determined by i).  For a random 

sequence, the probability of a specific model type m is 𝑑𝑚. Let 𝑑(𝑗) be the probability of 

the model type whose process time results in moving to state j from state i. The transition 

probability matrix can be generated as follows: 

 

𝑝𝑖𝑗 = {

𝑑(𝑗) 𝑓𝑜𝑟 𝑖 ≤ 𝐶, 𝑜𝑟 𝑖 > 𝐿 𝑗 = 𝑃𝑇1, 𝑃𝑇2, … , 𝑃𝑇𝑀

𝑑(𝑗) 𝑓𝑜𝑟 𝐶 < 𝑖 ≤ 𝐿 𝑗 = 𝑖 + 𝑃𝑇1 − 𝐶,… , 𝑖 + 𝑃𝑇𝑀 − 𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
(𝐼)
(𝐼𝐼) 

 

After completing a job, the workstation operator walks back C distance units 

towards the next job. This is because two adjacent jobs are located C distance units apart 

and it is assumed that the workstation operator walks back at infinite velocity. However, if 

the completion point of the 𝑛𝑡ℎ job is located at a distance less than or equal to C distance 

units, the workstation operator will have to wait at the upstream boundary for the next job 

to arrive. The next job begins processing as soon as it enters the workstation. If 𝑆𝑛 is less 

than or equal to C, 𝑆𝑛+1 will be at 𝑃𝑇(𝑛+1) distance units away from the start of the 

workstation. This is case (I). It also represents the case where the workstation operator, 

after completing the 𝑛𝑡ℎ job is located at a distance more than L distance units from the 

upstream boundary of the workstation which indicates a work overload occurrence. The 

workstation operator skips this job, waits for a new job to arrive, and starts operating it as 

soon as it arrives at the upstream boundary of the workstation. Hence, 𝑆𝑛+1will be at 

𝑃𝑇(𝑛+1)distance units away from the start of the workstation. 
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(II) represents a case when 𝑆𝑛 is between C distance units and L distance units away 

from the start of the workstation. The operator first moves C distance units towards the start 

of the workstation and meets  the 𝑛 + 1𝑡ℎ job at (Sn – C) distance units and then works on 

it for 𝑃𝑇(𝑛+1) distance units. Therefore, 𝑆𝑛+1will be located at Sn – C + 𝑃𝑇(𝑛+1) distance 

units away from the start of the workstation. Note that in this case, the workstation operator 

never reaches the upstream boundary of the workstation. 

 

The one-step transition probability matrix has the structure as shown below: 

    State j  

   (𝑃𝑇𝑚𝑖𝑛 ) (𝑃𝑇𝑚𝑖𝑛 + 𝑧) (𝑃𝑇𝑚𝑖𝑛 + 2𝑧)  … (L–C +𝑃𝑇𝑚𝑎𝑥) 

 

State i 

(𝑃𝑇𝑚𝑖𝑛)      

𝑃⃗ = (𝑃𝑇𝑚𝑖𝑛 + 𝑧)      

 (𝑃𝑇𝑚𝑖𝑛 + 2𝑧)      

 . 

. 

     

  (L–C +𝑃𝑇𝑚𝑎𝑥)      

 

The transition probability matrix for the example in section 3.1.1.2 is shown next. 

 

Illustrative Example 2 

 

Figure 10: Transition Probability Matrix for Illustrative Example 2 
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The transition probability matrix for Illustrative Example 2 is shown in Figure 10. As 

mentioned earlier, if the completion point of 𝑛𝑡ℎ job is less than or equal to C distance units 

or greater than L distance units then the completion point of 𝑛 + 1𝑡ℎ job will be at 

𝑃𝑇(𝑛+1)distance units because the workstation operator starts working on the 𝑛 + 1𝑡ℎ job 

from the upstream boundary of the workstation in these cases. Therefore, when the state of 

the 𝑛𝑡ℎ job is 9, 10, 14 or 15, the completion point of 𝑛 + 1𝑡ℎjob is equivalent to the 

processing time of the 𝑛 + 1𝑡ℎjob, and the transition probability is 𝑑(𝑛+1), which for this 

example is 0.25 for all job types. When the completion point for 𝑛𝑡ℎ job is 11, the operator 

starts working on the 𝑛 + 1𝑡ℎ job at 1 distance units and depending on the type of 

𝑛 + 1𝑡ℎjob the completion point will be either 10 (job type A), 11 (job type B), 12 (job 

type C), or 13 (job type D). Similarly, if the state of the 𝑛𝑡ℎ  job is 12, the completion point 

for 𝑛 + 1𝑡ℎjob will be either 11,12,13, or, 14, and if the state of the 𝑛𝑡ℎ  job is 13, the 

completion points can be either 12,13,14, or 15. 

 

Let 𝑝𝑖𝑗(𝑛) denote the n-step state transition probability. It is the conditional 

probability that the workstation operator will be located at j after working on exactly n jobs 

that are randomly selected from a given job set and launched down an assembly line given 

that he is presently located at i. The n-step transition probabilities can be obtained by 

multiplying the transition probability matrix by itself n times, where n indicates the number 

of jobs or Markov chain time steps. For an ergodic Markov chain, the n-step transition 

probability matrix will converge as n increases. The probabilities in each column converge 

to the steady state probability for the state corresponding to the column. The limiting or 

steady-state probabilities represent the probability of being in various states, far into the 

future, independent of the initial state. For an assembly line workstation, these steady-state 

probabilities are the probabilities of the workstation operator being located at various 

locations in a workstation when an infinite number of jobs is launched in a random 

sequence. These steady state probabilities exists only for Markov chains having a certain 

structure (ergodicity), which is established next.  
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3.1.1.4 Existence and Determination of Steady-state Probabilities  

 

For a finite state, irreducible Markov chain with aperiodic states, the limiting 

probabilities r exist and all r’s are greater than 0. In the assembly line workstation 

Markov chain model,  

i. It is possible to eventually visit state j if the chain starts at state i and state i can be 

eventually visited from state j. For instance, in Illustrative Example 2, state 12 is 

visited from state 9 if the job launching sequence  is A(n=1), A(n=2),D (n=3) and 

state 9 can be visited from state 12 if the job launching sequence is D(n=1), A(n=2). 

All states are communicating and therefore belong to the class. This makes the 

Markov chain irreducible.  

ii. For every 𝑛𝑡ℎ  job, having 𝑆𝑛 ≤ 𝐶, the 𝑛 + 1𝑡ℎ job is worked on from the upstream 

boundary of the workstation. If the 𝑛 + 1𝑡ℎ job type is the same as that of 𝑛𝑡ℎ then 

𝑆𝑛+1 = 𝑆𝑛. In other words, all the states having value less than or equal to C are 

aperiodic which makes the Markov chain aperiodic. In the Illustrative Example 2, 

state 9 and state 10 are aperiodic states.  

iii. There are finite number of states, which implies the Markov chain is positive 

recurrent. 

 

For such a finite state, aperiodic, positive recurrent (ergodic) Markov chain, steady state 

probabilities exists and can calculated using following steps: 

Step 1: Construct the state transition matrix 𝑃⃗  

Step 2: Find 𝑃⃗ *, where 𝑃⃗ * =  𝑃⃗  - 𝐼   and 𝐼  is an identity matrix having dimensions of 𝑃⃗  

Step 3: Find 𝑃⃗ **, by replacing the last column of 𝑃⃗ * by 1’s 

Step 4: Find (𝑃⃗ **)-1. Last row of (𝑃⃗ **)-1 gives the steady state probabilities. 

 

Illustrative Example 2 

Using the steps mentioned above, the steady state probabilities for the Illustrative Example 

2 are calculated and are shown in Table 5  



35 

 

 

Table 5: Steady State Probabilities for Illustrative Example 2 

State 9 10 11 12 13 14 15 

Steady State 

Probability 
0.0961538 0.14904 0.21154 0.25 0.15385 0.10096 0.03846 

  

As mentioned before, these steady state probabilities give us the probabilities of work 

completion points being at various locations along the workstation for a random job 

launching sequence. The number of jobs launched times the steady state probability of a 

state gives us an approximation of the average number of jobs that are completed at a 

location represented by that state. The steady state probabilities represent the portion of 

time the job is completed at a location for a set of infinite jobs. Since we assume finite 

number of jobs in a job set, the steady state probabilities are considered to be an 

approximation. This is discussed in detail in the next chapter. If the number of jobs 

launched are 1000, then the average number of jobs completed at 9 distance units away 

from the upstream boundary will be 1000*0.0961 which is 96.1. By similar logic, the 

average number of jobs causing work overload occurrence is a sum of the average number 

of jobs completed at 14 distance units and 15 distance units away from the upstream 

boundary which represents work overload states.  

 

Average number of work overload occurrences = 1000 * (14 + 15) 

 =  139.42 

 

For a random 1000 job sequence, the approximate average number of work overload 

occurrences is 139.42. Although the steady state probabilities obtained from the Markov 

chain are used estimate the expected number of work overload occurrences in a sequence, 

it does not directly provide probabilities for a specific number of work overload 

occurrences in a sequence of jobs processed through the workstation. The probability 

distribution for the number of work overload occurrences is obtained by examining Markov 

chain transitions from any non-work overload states (non-work overload states are job 

completion points that are located within the work station boundaries) to any work overload 
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states (work overload states are job completion points located beyond the downstream 

boundary). This was accomplished by aggregating all non-work overload states into a 

single state, and all work overload states of the Markov chain into a single state and 

examining transitions between these two states. This is presented in detail in the following 

section. 

  

3.1.2 Markov Chain State Aggregation 

 

If {xi, i = 1, 2, 3,…} is an ergodic Markov chain, state aggregation creates another ergodic 

Markov chain {Xi, i = 1, 2, 3,…} by aggregating or mapping multiple states from chain {xi, 

i = 1, 2, 3, …} to a single state in chain {Xi, i = 1, 2, 3,…}(Kim et al. (1995)). All states in 

{xi, i = 1, 2, 3,…} are mapped to some state in {Xi, i = 1, 2, 3, …}.  The transition 

probabilities in chain {Xi, i = 1, 2, 3, …} can be computed such that the limiting probability 

of a state in {Xi, i = 1, 2, 3, …}, Π𝑗 = ∑𝜋𝑘, where  𝜋𝑘 is the limiting probability of state k 

in Markov chain {xi, i = 1, 2, 3,…}. The summation is over all states mapped to state j in 

Markov chain {Xi, i = 1, 2, 3,…}.  The chain {Xi, i = 1, 2, 3,…} is referred to as the 

macrostate Markov chain. For the workstation completion time Markov chain {Si, i = 1, 2, 

3,…} the macrostate Markov chain has two states, the non-work overload state, and the 

work overload state. The transition probabilities for the macrostate Markov chain are 

calculated using the steady state probabilities and one step transition probabilities from {Si, 

i = 1, 2, 3, …}. Section 3.1.2.1 presents formulas for calculating the macrostate Markov 

chain state transition probabilities when the performance measure of interest is the number 

of work overload occurrences. Section 3.1.2.2 presents the same when the performance 

measure of interest is the severity of work overloads. 

 

3.1.2.1 Number of Work Overload Occurrences 

 

Let the states within the workstation boundaries, i.e. all job completion locations 

whose distance from the upstream boundary is less than or equal to the length of the 

workstation be aggregated into one state namely NWO (non-work overload) state. Let the 

states beyond workstation boundaries i.e. all job completion points located beyond the 
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downstream boundary of the workstation be aggregated into one WO (work overload) state.  

Let A represent the total number of states within workstation boundaries (index 𝑎 = 

1,2,…A) and B represent the total number of states beyond workstation boundaries (index 

b = 1,2,…B).  

 

 

 

 

 

 

 

 

 

 

 

The resulting macrostate Markov chain state transition diagram is shown in Figure 11.  The 

state transition probabilities are labeled on the appropriate arcs.  

 

Figure 11: Macro Markov Chain State Transition Diagram 

P(NWO|NWO) represents the conditional probability of transitioning to the non-

work overload state given that the Markov chain is currently in the non-work overload 

state. This probability can be determined using (6).  

 

 

State:  PTmin    PTmin+ z  . . . .  L    . . . .  L + (PTmax – C) 

   

𝜋𝑃𝑇𝑚𝑖𝑛  𝜋𝑃𝑇𝑚𝑖𝑛+𝑧    . . . .   𝜋𝐿    . . . . 𝜋𝐿 + (𝑃𝑇𝑚𝑎𝑥 – 𝐶) 

 

 

 

State: 

Steady State 

Probability: 

NWO WO 

Steady State 

Probability: 
𝜋𝑁𝑊𝑂 𝜋𝑊𝑂 
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P(NWO|NWO)  = ∑ (
𝜋𝑎

(∑ 𝜋𝑎
A
𝑎=1 )

∗ (1 − ∑ 𝑃𝑎𝑏
𝐵
𝑏=1 ))𝐴

𝑎=1      (6) 

Where, 

𝑃𝑎𝑏 = entry in the 𝑎𝑡ℎ row and 𝑏𝑡ℎ  column of the transition probability matrix 𝑃⃗  for 

Markov chain {Si, i = 1, 2, 3,…}. 

 

The term 
𝜋𝑎

(∑ 𝜋𝑎
A
𝑎=1 )

 represents the weighted probability of being in 𝑎𝑡ℎ state given that it is 

in any of the work overload states (i.e., 𝑎 =1, 2,.., A). The term (∑ 𝑃𝑎𝑏
𝐵
𝑏=1 ) in indicates the 

total probability of transition from the 𝑎𝑡ℎ non-work overload state into some work 

overload state (i.e. b,=1, 2,.., B). Therefore, the term (1 − ∑ 𝑃𝑎𝑏
𝐵
𝑏=1 ) gives the total 

probability of transitioning back from the 𝑎𝑡ℎ non-work overload state into some non-work 

overload state (i.e. 𝑎 =1, 2,.., A). 

 

Similarly, P(WO|NWO), i.e. the conditional probability of transitioning to the work 

overload state given that it is in the non-work overload state which can be determined using 

(7).  

P(WO|NWO) = ∑ (
𝜋𝑎

(∑ 𝜋𝑎
𝐴
𝑎=1 )

∗ (∑ 𝑃𝑎𝑏
𝐵
𝑏=1 ))𝐴

𝑎=1 … (7) 

 

P(NWO|WO) indicates the conditional probability of a transition from a work overload 

state to a non-work overload state. Since this research assumes a skip policy, the 

workstation operator will skip all work overload causing job and wait for the next job to 

arrive so that work on this job starts from the upstream boundary. Therefore, the job 

processed after encountering a work overload causing job (represented by being in WO 

state) is always completed within workstation boundaries (represented by the transition to 

NWO state from WO state). Hence, P(NWO|WO) will always be one. This also explains 

the absence of self-transition arc for the WO state in the macrostate Markov Chain state 

transition diagram. 
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Illustrative Example 2 

In this example, states 9, 10, 11, 12 and 13 are aggregated into the NWO state and states 

14 and 15 are aggregated into the WO state as shown in Table 6. The total number of states 

within workstation boundaries are A=5, and those beyond workstation boundaries are B=2. 

Using steady state probabilities from Table 5 and equations (6) and (7) the transition 

probabilities are calculated and displayed in Figure 12. Refer to  

Table 7 for calculations. 

 

Table 6: Illustrative Example 2 State Indices for Number of Work Overload 

Occurrences 

  
𝑎 =1 𝑎 =2 𝑎 =3 𝑎 =4 𝑎 =5 b=1 b=2 

  
9 10 11 12 13 14 15 

𝑎 =1 9 0.25 0.25 0.25 0.25 0 0 0 

𝑎 =2 10 0.25 0.25 0.25 0.25 0 0 0 

𝑎 =3 11 0 0.25 0.25 0.25 0.25 0 0 

𝑎 =4 12 0 0 0.25 0.25 0.25 0.25 0 

𝑎 =5 13 0 0 0 0.25 0.25 0.25 0.25 

b=1 14 0.25 0.25 0.25 0.25 0 0 0 

b=2 15 0.25 0.25 0.25 0.25 0 0 0 
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Table 7: Illustrative Example 2 Macrostate Markov Chain Transition Probabilities 

Calculations  

 

 

 

 

Figure 12: Illustrative Example 2 Macrostate Markov Chain State Transition 

Diagram  

 

3.1.2.2 Work Overload Occurrence Severity 

 

If the work completion location of the 𝑛𝑡ℎ job is close to the downstream boundary, 

then it is possible that the completion point of the 𝑛 + 1𝑡ℎjob is a work overload state. If 

the workstation operator completes the 𝑛𝑡ℎ job at the downstream boundary of the 

workstation, and the 𝑛 + 1𝑡ℎjob is the most work-intensive job then 𝑆𝑛+1 will be at the 

farthest work completion point from the upstream boundary of the workstation. If the work 

overload states are numbered from 1 to B, then B is the most severe work overload state 
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because it requires the largest amount of utility work. Similarly, b=1 is the least severe 

work overload state. The following establishes the formulas used to determine transition 

probabilities of the macrostate Markov. 

Let all the states except the work overload state of interest (work overload of certain 

severity) say b, be aggregated into single state (say Z) and let the total number of states 

aggregated into Z state be A (index 𝑎 = 1, .., A). The state transition diagram for such a 

macro Markov chain will be similar to Figure 10, and the transition probabilities can be 

calculated as follows: 

 𝑃(𝑍|𝑍)  = ∑ (
𝜋𝑎

(∑ 𝜋𝑎
𝐴
𝑎=1 )

∗ (1 − 𝑃𝑎𝑏))
𝐴
𝑎=1 … (8) 

Here, the term 
𝜋𝑎

(∑ 𝜋𝑎
𝐴
𝑎=1 )

 gives the weighted probability of being in the state a given that it 

is in either of the Z states and the term 𝑃𝑎𝑏 gives the probability of transitioning from the 

state a of the Z state into WO state b. Similarly, the term (1 – 𝑃𝑎𝑏) gives the probability of 

transitioning from state 𝑎 of Z state back into one of the Z states. Because of the same 

reason mentioned in section 3.1.2.1 the probability of transitioning into Z state from WO 

state will always be one and it is not possible to reenter WO state from WO state. 

 

Illustrative Example 2 

In this case, state 15 is the most severe work overload state (say severity 2) as compared to 

state 14 (say severity 1). Let state 14 be the state of interest, i.e. we are interested in finding 

out the average number of jobs that cause a work overload of severity 1. Let states 9, 

10,11,12,13 and 15 be aggregated into one state that is represented in the macro Markov 

chain as Z state. Let state 14 be indexed as b and is represented in the macro Markov chain 

as WO1 state. Refer to Table 8 in the appendix for state indices. Using (8) the transition 

probabilities into work overload state of severity 1 are calculated and displayed in Figure 

13. Refer to 

Table 9 for calculation details. 
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Table 8: Illustrative Example 2 State Indices for Examining Work Overload Severity  

 

 

Table 9: Illustrative Example 2 Macrostate Markov Chain Transition Probabilities 

Calculations  

 

 

 



43 

 

 

 

 

Figure 13: Illustrative Example 2 Macrostate Markov Chain State Transition 

Diagram  

Now that we have determined the transition probabilities within the macro Markov 

chain, the next step is estimating the probability of the number of transitions into the work 

overload state i.e. number of times the WO state is visited for a fixed number of transitions. 

The number of transitions depends upon the number of jobs that are to be launched and 

each entry into WO state of the macro Markov chain resembles a work overload occurrence. 

This will give us an estimate of the number of times work overload situation occurs when 

a fixed number of jobs are launched in a random sequence.  

 

3.1.3 Probability for the Number of Work Overload Occurrences 

 

The macrostate Markov chain transition probabilities gives the likelihood of the 

Markov chain transitioning from a non-work overload state to itself and also to a work 

overload state. Using these probabilities, we can estimate the probability of the number of 

work overload occurrences for a fixed number of jobs in a random sequence. In this section, 

a formula for the probability distribution of the number of work overload occurrences is 

derived using information from the macrostate Markov chain.   

Let the total number of jobs launched down an assembly line be N (index n =1,... 

N). There will be N state transitions (some back to the same state) in the macrostate Markov 
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chain. The objective is to determine the probability that a transition into a work overload 

state occurs a specific number of times, i.e. the probability of transitioning into state WO 𝑙 

times when N number of jobs are processed through the assembly line workstation. This 

probability can be calculated using the following formula: 

 

P(WO = 𝑙) = {P(WO|NWO)𝑙 ∗ P(NWO|NWO)N−2𝑙 ∗ (
N − 𝑙

𝑙
)} + {P(WO|NWO)𝑙 ∗

P(NWO|NWO)N−2𝑙+1 ∗ (
N − 𝑙
𝑙 − 1

)}      (9) 

 

Where 𝑙 is the number of work overload occurrences, and the range of 𝑙 is from 0 to N/2. 

When a work overload occurrence is encountered, the workstation operator returns to the 

start of the workstation and the next job starts processing from the upstream boundary. 

Thus the job following a work overload job will never itself cause a work overload. Hence, 

if N jobs are launched, the maximum number of work overload occurrences that can be 

encountered is N/2. 𝑙 =0 in the above formula represents a scenario when none of the 

launched jobs cause work overload occurrence and 𝑙 =N/2 represents a case when every 

other job in the sequence causes a work overload occurrence.  

To derive formula (9) the possible outcomes are partitioned into two categories. 

Category 1 is when the last job (n=N) in a sequence completes in a NWO state.  Category 

2 is when the last job in a sequence completes in a WO state. For Category 1 outcomes and 

a fixed 𝑙, there is one less state NWO self-transition than for a Category 2 outcome. This is 

because of the skip policy, so that the transition probability into a NWO state from a WO 

state is equal to one. The probabilities for a specific number of transitions comes from the 

macrostate Markov chain transition probabilities (raised to the appropriate power).  

The next step is to determine how many different ways 𝑙 transitions into a WO state 

can occur. In Category 1 𝑙 jobs in a sequence of N jobs finish processing in a WO state, and 

N- 𝑙 jobs finish processing in a NWO state. In Category 1 the last job finishes in a NWO 

state so there are N- 𝑙 possible locations in a sequence where the WO states may occur (see 

Figure 6). 



45 

 

 

 

Figure 14: Possible locations for WO states in Category 1 outcomes 

The WO states can be in any of the spaces shown in Figure 14. The 𝑙 WO states can occupy 

any of the available N- 𝑙 “spaces” preceding a NWO state. Therefore, the total number of 

possible combinations of l WO and N- 𝑙 NWO states such that there is at least one NWO 

state between two WO states is (
𝑁 − 𝑙

𝑙
).  The probability of a Category 1 outcome with 𝑙 

WO states is  

 

 P(WO|NWO)𝑙 ∗ P(NWO|WO)𝑙 ∗ P(NWO|NWO)N−2𝑙 ∗ (
𝑁 − 𝑙

𝑙
) =

                  P(NWO|WO)𝑙 ∗ P(NWO|NWO)N−2𝑙 ∗ (
𝑁 − 𝑙

𝑙
). 

 

For Category 2 outcomes there is one additional NWO self-transition, and one less 

WO state dispersed throughput the sequence since the last job finishes in a WO state. For a 

Category 2 outcome with 𝑙 work overloads, there are N- 𝑙 possible “locations” where 𝑙 -1 

WO states can occur. This is shown in Figure 15.  

 

Figure 15: Possible locations for WO states in Category 2 outcomes 

 

Therefore, the total number of possible Category 2 outcomes with 𝑙 WO states equals the 

number of ways 𝑙 -1 WO locations may be selected from N- 𝑙 choices, which equals 

(
𝑁 − 𝑙
𝑙 − 1

). The probability of a Category 2 outcome with 𝑙 WO states is 
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{P(WO|NWO)𝑙 ∗ P(NWO|WO)𝑙−1 ∗ P(NWO|NWO)N−2𝑙+1 ∗ (
𝑁 − 𝑙
𝑙 − 1

)}

= P(NWO|WO)𝑙−1 ∗ P(NWO|NWO)N−2𝑙+1 ∗ (
𝑁 − 𝑙
𝑙 − 1

) 

 

Combining the probability of Category 1 and Category 2 outcomes with 𝑙 WO states 

gives the probability of 𝑙 work overloads in a random sequence of N jobs as 

 

{P(WO|NWO)𝑙 ∗ P(NWO|NWO)N−2𝑙 ∗ (
𝑁 − 𝑙

𝑙
)}

+ {P(WO|NWO)𝑙 ∗ P(NWO|NWO)N−2𝑙+1 ∗ (
𝑁 − 𝑙
𝑙 − 1

)}      (10) 

 

To verify the probabilities obtained using (10), the macro Markov chain shown in 

Figure 12 was simulated with Crystal Ball software (Monte Carlo simulation add-in for 

Excel). The total number of transitions into a WO state were counted for 1000 jobs. The 

number of replications was set to 1,000,000. The probabilities obtained by performing the 

Monte Carlo simulation were then compared to those calculated using (10). Figure 16 

shows the probabilities calculated using (10) and from the Monte Carlo simulation.  
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Figure 16: Probability of the Number of Work Overload Occurrences from (10) and 

from Monte Carlo Simulation 

 

Appendix 1 compares the probabilities obtained using (10) and simulation for all 

possible values of 𝑙. Note that the probabilities in Appendix 1 are only up to four decimals. 

For 𝑙 = 117 to 171, a small difference is observed that can be minimized by increasing the 

number of simulation replications. The simulation probabilities obtained using Monte 

Carlo simulation are similar to those obtained using (10).  

 

Illustrative Example 2 

In this example, the number of jobs launched down an assembly line is 1000, i.e. N=1000. 

The macrostate Markov chain transition probabilities P(WO|NWO) and P(NWO|NWO) 

are 0.162 and 0.838 respectively. The probability of getting one work overload occurrence 

when 1000 jobs are launched randomly can be calculated using (10) as follows 

𝑃(𝑊𝑂 = 1) =  {0.1621 ∗ 0.838998 ∗ (
999
1

)} + {0.1621 ∗ 0.838999 ∗ (
999
0

)} 
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Similarly, the probabilities for all possible values of 𝑙 can be calculated using (10) and are 

shown in Figure 17. 

 

Figure 17: Probability of the Number of Work Overload Occurrences for 

Illustrative Example 2 

The results indicate that if 1000 jobs (with known job types and proportions) are launched 

down an assembly line in a random sequence then the probability of getting no work 

overloads is extremely unlikely (P(WO = 𝑙) = 1.75396E-77).  For a random job launching 

sequence the most likely number of work overload occurrences is 139 (P(WO = 139) = 

0.042836).  

 

3.2 Determining Work Overload Probabilities Computationally 

This section presents the method used to computationally estimate the probability 

distribution for number of work overload occurrences, and the severity of work overloads 

for a random job launching sequence. Evaluating all possible launching sequences for a 

given set of jobs (if I jobs are to be launched I! sequences are possible) is computationally 

impractical if I is large. Therefore random sequences are sampled, and the detailed method 

used for this sampling is presented in Figure 18 in the form of a flowchart. 

 

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0

1
6

3
2

4
8

6
4

8
0

9
6

1
1

2

1
2

8

1
4

4

1
6

0

1
7

6

1
9

2

2
0

8

2
2

4

2
4

0

2
5

6

2
7

2

2
8

8

3
0

4

3
2

0

3
3

6

3
5

2

3
6

8

3
8

4

4
0

0

4
1

6

4
3

2

4
4

8

4
6

4

4
8

0

4
9

6

P
ro

b
ab

ili
ty

 (
𝑃

(𝑊
𝑂

=
𝑙)

)

Number of Work Overload Occurrences(𝑙)



49 

 

 

 

Figure 18: Flowchart of the method used to estimate the average number of work 

overload occurrences 
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In order to estimate the probability of work overload occurrences, I jobs are 

randomly selected from a very large population of jobs. This large population of jobs 

(dataset of job processing times) is generated using Crystal Ball software wherein the 

proportion of job type m is equal to 𝑑𝑚. The datasets generated for this research contains 

processing times of 1 million jobs. A fixed number of jobs (I) were then randomly selected 

from this data set. Let, Q be the number of times I jobs are randomly selected from the 

dataset (index q = 1, 2,.., Q)). Since these I jobs are selected randomly, the proportions of 

job types in each selection may not be exactly equal to 𝑑𝑚. However, after Q random 

selections of I jobs each, the average proportion of job type m over all selections will 

converge to 𝑑𝑚. The I jobs from the qth selection are then randomly sequenced using the 

modern Fisher Yates algorithm (that was introduced by Durstenfeld, R. (1964)) and the 

number of work overload occurrences are determined for that sequence. The Fisher-Yates 

shuffle is an algorithm for generating random permutations of finite linear elements. It 

ensures that each random sequence generated is equally likely and therefore unbiased. The 

algorithm presented by Boysen et al. (2011) to evaluate the number of work overload 

occurrences is used. These steps of generating random sequence and determining the 

number of work overload occurrences are repeated R times. Once I jobs are randomly 

sequenced R times, a set of I jobs is again randomly selected from the dataset, and the same 

procedure is repeated until q=Q. Finally, the average number of work overload occurrences 

for a random launching sequence is calculated.  

 The results obtained using the mathematical model, and estimated computationally 

are discussed in detail in the following chapter. 
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4 RESULTS 

This chapter presents the results obtained by using the Markov chain model for various 

combinations of job sets and workstation lengths. Different test cases are obtained by 

varying processing times of job types, demand fraction of job types, the workstation length 

and the total number of jobs in the job set. The average number of work overloads are 

analyzed and validated in Section 4.1 where four test cases are presented. This section also 

examines the discretization of continuous processing times for purposes of applying the 

Markov chain model.  In Section 4.2 the probability distribution of the number of work 

overload occurrences is examined, and then the probability distribution for five test cases 

is presented. Section 4.3 presents the relationship between the accuracy of the Markov 

chain result and the numbers of jobs in a job set. Lastly, Section 4.4 presents an application 

of the Markov chain model. In this application it is demonstrated that the macro Markov 

chain transition probability can be used to identify whether solving a job sequencing 

problem will give a sequence with zero work overloads without solving the problem.  

4.1 Average Number of Work Overload Occurrences 

This section presents the average number of work overloads for four test cases Case1, 

Case2, Case3, and Case4. Case1 and the Case2 have different job types in same proportion 

and their processing times are fixed integer time units. The transition probability matrices 

for Case1 and Case2 are presented and explained in detail. In Case3, the demand fraction 

differs across job types, and the processing times follow a specific probability distribution. 

The last test case, Case4 consists of jobs with non-integer processing times. 

 

Case1 

This is a mixed model assembly line having a workstation of length 18 distance 

units and the cycle time is ten time units. The conveyor moves at a speed of 1 distance unit 

per time unit, and 100 jobs are sequenced and assembled through the line. There are eight 

job types with processing times and demand fractions as shown in Table 10.  
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Table 10: Case1 Job Set Composition 

Job 
Type  

Processing Time 
(Time Units) 

Demand 
Fraction 

A 9 0.125 

B 10 0.125 

C 11 0.125 

D 12 0.125 

E 13 0.125 

F 14 0.125 

G 15 0.125 

H 16 0.125 

 

The Markov chain state space (section 3.1.1.2) is as follows: {State Space} = {9, 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19(WO1), 20(WO2), 21(WO3), 22(WO4), 23(WO5), 

24(WO6)}. The total number of states is 16, of which six states are work overload states. 

10 other states are non-work overload states, i.e. the states that represent job completion 

points that are located within the workstation boundaries. State WO1 represents a work 

completion at 19 distance units away from the start of the workstation, and state WO6 

represents a work completion at 24 distance units away from the start of the workstation.   

The one-step transition probability matrix is formulated using the guidelines 

provided in Section 3.1.1.3 and is presented in Table 11. The rows indicate the completion 

point of the 𝑛𝑡ℎ job in the sequence, and the columns indicate the completion point of the 

𝑛 + 1𝑡ℎ  job in a sequence. After completing a job, the workstation operator walks ten 

distance units towards the upstream boundary of the workstation to catch the succeeding 

job in a sequence. This is because the cycle time is ten time units so that all jobs are 

launched ten distance units apart.  

However, if the completion point of the 𝑛𝑡ℎ job is at a distance less than or equal 

to 10 distance units away from the upstream boundary, then the operator will have to wait 

at the upstream boundary for the next job to arrive. In this case, the 𝑛 + 1𝑡ℎ  job starts 

processing as soon as it enters the workstation, and is completed at a distance from the 

upstream boundary equal to the job processing time. For example if the 𝑛𝑡ℎ job is 

completed at 9 distance units, the operator walks back 9 distance units and waits at the 
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upstream boundary for 1 time unit until the next job enters the workstation. Since all job 

types in Case1 are in equal proportion, the probability of transitioning from state 9 to any 

state from 9 to 16 is equal (0.125). Similar transition probabilities are observed when the 

𝑛𝑡ℎ job is completed at 10 distance units. 

If the 𝑛𝑡ℎ job causes a work overload, it will be skipped by the operator. The next 

job starts processing at the upstream boundary, and is completed at either 9, 10, 11, 12, 13, 

14, 15 distance units from the upstream boundary depending upon the processing time of 

the job. Since all job types occur in equal proportions, the probability of transitioning from 

state 19 to state 8, 11, 13 or 15 is equal to 0.125. Similarly, the probability of transitioning 

from state 20, 21, 22, 23, or state 24 to state 9, 10, 11, 12, 13, 14, 15, or state 16 is equal to 

0.125. 

If the completion point of the 𝑛𝑡ℎ job is anywhere between 11 and 18 distance units, 

the next job does not start processing at the upstream boundary  For instance, if the 

completion point of 𝑛𝑡ℎ job is at 11 distance units, the operator will move back towards 

the next job and start processing at one distance unit past the boundary. Similarly, if the 

completion point of 𝑛𝑡ℎ job is at 18 distance units, the operator will move back towards 

the next job and start processing at 8 distance units past the boundary. 
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Table 11: Case1 Transition Probability Matrix 

 

 

Table 12: Case1 Steady State Probabilities 
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The steady-state probabilities for this Markov chain are shown in Table 12. The 

average number of jobs that are completed at 19 distance units is 6.9, and the average 

number of jobs that are completed at 24 distance units is 1. There are six possible locations 

from which the operator can reach WO1 location whereas the operator can reach WO6 

location only if the 𝑛𝑡ℎ job is completed at 18 distance units and the next job in the sequence 

is of type H.  

The interpretation of the steady state probabilities in Table 12 is as follows. If an 

infinite random sequence of the eight job types (all with equal probability) is processed on 

the workstation, then for a random selection of 100 jobs in sequence, on average 24.1 of 

those jobs will cause a work overload occurrence. Thus the Markov chain model can be 

considered an approximation to reality where jobs are processed in groups of 100, with the 

first job of each random sequence of 100 jobs starting processing at the workstation 

boundary.  

To check the accuracy of the approximation, the average number of work overloads 

obtained using the Markov chain (100 jobs * steady state probabilities) are compared to 

the average number of work overloads obtained computationally by processing random 

sequences of 100 jobs. The results are shown in Figure 19. The simulation average in 

Figure 19 refers to the average number of work overloads for all random launching 

sequences. The dataset of job processing times consisted of 1 million jobs. 100 jobs were 

randomly sampled from this dataset 100 times. Each set of 100 jobs was then randomly 

sequenced 1 million times, and each sequence was processed on the workstation. In total 

100 million 100 job sequences were processed on the workstation. For each sequence the 

number of work overloads was recorded. The simulation minimum and maximum refers to 

the lowest and the highest number of work overloads observed amongst all random 

launching sequences respectively.  
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Figure 19: Case1: Severity of Work Overloads 

A small difference in the Markov chain average and the simulation average is 

observed. It is expected that if the number of jobs in a sequence increases, the difference 

between the Markov chain averages and the simulation averages should decrease. This 

relationship is demonstrated in Figure 20. The vertical axis in Figure 20 is the “% 

Difference”. 

% Difference =  
Markov Chain Average − Simulation Average

(
Markov Chain Average + Simulation Average

2 )
 

When the number of jobs is 10, the difference is 16.6% and as the number of jobs is 

increased the difference decreases and is close to zero when the number of jobs is 1 million. 

This relationship between the two is explained in more detail in Section 4.4. 
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Case2 

Consider a similar mixed model assembly workstation but with different job 

configuration as shown in Table 13. The cycle time is ten time units and 100 jobs are to be 

assembled. The job set has five different job types that are in the same proportion. The 

discrete time Markov chain has 13 states of which three states 19(WO1), 20(WO2) and 

21(WO3) are work overload states.  

Table 13: Case2 Job Composition 

Job 

Type 

Processing Time 

(Time Units) 

Demand 

Fraction  

A 9 0.2 

B 10 0.2 

C 11 0.2 

D 12 0.2 

E 13 0.2 
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The Transition Probability matrix and the steady state probabilities are presented in  

Table 14 and Table 15, respectively. The Markov chain can transition into the least severe 

work overload state from states 16, 17 and 18 (distance units). The most severe work 

overload state can be reached only if the 𝑛𝑡ℎ job is completed at 18 distance units and the 

next job is of type E. Therefore, there are more jobs that are completed at 19 distance units 

as compared to those completed at 21 distance units. 

The Markov chain results are compared with the simulation results in the Figure 

21. The average number of work overload occurrences for Case2 is 10.8 with the average 

number of the least severe work overloads being 5.7 and the average number of most severe 

work overloads being 1.57.  
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Table 14: Case2 Transition Probability Matrix 

 

Table 15: Case2 Steady State Probabilities 
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Figure 21: Case2: Severity of Work Overloads 

Case3 

The Case1 and the Case2 have multiple job types in equal proportions, and each 

job type has fixed processing times. In Case3 there is a similar workstation configuration, 

but Case3 has three job types having different demands, and each job type has uncertainty 

in processing times as shown in Table 16. For instance, the job type A can have any integer 

processing time between four and six time units. Here, the probability of a randomly 

selected job having processing time four time units is the probability of the job having a 

processing time of four time units given that the selected job is of type A (0.4*0.333 = 

0.133). Similarly, the probability of a randomly selected job having a processing time of 

10 time units is 0.05. The transition probability matrix for this case is presented in Table 

17. The cycle time is ten time units, the number of jobs to be launched are 100 and the 

length of the workstation is 18 time units. The discrete time Markov chain consists of 22 

states, of which, seven are work overload states. 
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The steady state probabilities are shown in Table 18. The average number of jobs 

(out of 100) with work overloads is 14.1. The Markov chain results are compared with the 

simulation results in the Figure 22.  

Table 16: Case3 Job Composition 

Job 

type 
Processing Time (TU) 

Demand 

Fraction (%) 

A Discrete Uniform Distribution (4,6) 0.4 

B Discrete Uniform Distribution (8,11) 0.2 

C Discrete Uniform Distribution (15,17) 0.4 
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Table 17: Case3 Transition Probability Matrix 

 

 

Table 18: Case3 Steady State Probabilities 
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Figure 22: Case3: Severity of Work Overloads 

Case4 

Case4 consists of three sub-cases where some sub-cases have non-integer 

processing times. Case4A, Case4B and Case4C having processing times between 9 and 11 

time units. The length of the workstation is 12 time units, the cycle time is 10 time units 

and the number of jobs is 100.  

Case4A jobs have integer processing times. There are three job types that are equal 

in proportion with processing times of 9, 10 and 11 time units. The Markov chain for 

Case4A consists of a single work overload state (13(WO1)) and four non work overload 

states (9, 10, 11 and 12). Figure 23 presents the average number of jobs out of 100 that 

cause a work overload. 
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Figure 23: Case4A: Severity of Average Number of Work Overloads (100 Jobs) 

Case4B jobs have processing times obtained from a uniform distribution between 

9 and 11 time units. The processing times are rounded up to nearest tenth. The processing 

time of each of the job can be any of the following 9, 9.1, 9.2, 9.3... 10.9, 11. The 

discretization of the processing times to the nearest tenth results in a Markov chain with 41 

states of which 10 states are work overload states. Jobs completed at 12.1 distance units 

are considered the least severe (WO1) work overload, and those completed at 13 distance 

units are considered the most severe (WO10) work overload. Figure 24 presents the 

average number of work overloads of all severities (for 100 jobs). 
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Figure 24: Case4B: Average Number of Work Overloads (100 Jobs) 

Case4C jobs have processing times that are rounded up to the nearest hundredth so that the 

processing times could be any of the following 9, 9.01, 9.02, 9.03…, 10.99, 11. This results 

in a Markov chain with 401 states, of which 100 are work overload states. The average 

number work overload jobs out of 100 jobs obtained in all three cases are compared in 

Figure 25. Since the work content and the available time is the same across all three cases, 

the average work overloads should be similar. Note that the Case4A has only one work 

overload state and therefore, the average for the total number of work overloads is exactly 

the same as the average for the WO1 overload state. 
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Figure 25: Comparing the Average Number of Work Overloads for 100 Jobs 

Based on the simulation results observed in this section, the results produced by the 

Markov chain model are sufficiently accurate to predict work overload occurrences in 

random sequences. Additionally, as the number of jobs increases, the accuracy of the 

results also increases. The results also show that it is possible to model the MMAL that 

have continuous processing times of jobs by discretizing the process times. The next 

section presents an examination of the probability distribution curve of the number of work 

overloads. 
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4.2 Probability Distribution for the Number of Work Overload 

Occurrences 

In this section the probabilities obtained for the number of workload occurrences in a finite 

sequence of jobs using the Markov chain model are compared with probabilities from a 

C++ simulation.  

Consider Case1 mentioned in the previous section except now with 1000 jobs in a 

random sequence. The transition probability from a non-work overload state to a work 

overload state in the macro-state Markov chain (P(WO|NWO)) is calculated as shown in 

Section 3.1.2.1 and is 0.315, and the range for the total number of overload occurrences is 

zero to 500 (for 1000 jobs). Using the formula (10) presented in Section 3.1.3, the 

probabilities for the number of work overload occurrences can be calculated for a 1000 job 

random sequence. Figure 26 presents the probability distribution of the total number of 

work overload occurrences for Case1 with 1000 jobs. The most likely number of overload 

occurrences is 240 with a probability of occurrence being 0.0408. The probability 

distribution is “bell shaped” for Case1 with extremely low probabilities for a large portion 

of the 0 to 500 work overload occurrence range. 

 

Figure 26: Case1 - Probability Distribution of the Total Number of Workload 

Occurrences 
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Figure 27 presents the probability distributions for specific work overload states that 

occur in Case1 using the method in Section 3.1.3, and compares them with simulation. The 

WO1 work overload state occurs between 48 and 92 times (in a sequence of 1000 jobs) 

with the most likely number being 68 that has an estimated probability of 0.0536. Similarly 

state WO6 occurs between 0 and 22 times with 9 being the most likely with a probability 

of 0.1308. The probabilities obtained using the Markov chain model are very close to the 

probabilities obtained using the simulation. It is also evident from Figure 26 and Figure 27 

that it is unlikely for Case1 to have zero work overloads. 

 



69 

 

 

 

Figure 27: Case1: Probability Distribution of Specific Workload States 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

9
0

9
2

9
4

9
6

9
8

1
0

0

P
ro

b
ab

ili
ty

Number of Work Overloads
WO1-Simulation WO2-Simulation WO3-Simulation WO4-Simulation WO5-Simulation WO6-Simulation

WO1-Markov Chain WO2-Markov Chain WO3-Markov Chain WO4-Markov Chain WO5-Markov Chain WO6-Markov Chain



70 

 

 

A new test case, Case5 is introduced that consists of five job types which are equally 

likely, and have processing times of 7, 8, 9, 10 and 11 time units. The length of the 

workstation is 18 time units, the cycle time is 10 time units and the number of jobs in a 

sequence is 1000. The Markov chain for this case has 13 states of which one is a work 

overload state. The steady state probability of the work overload state is 0.0000042. The 

job type with an 11 time unit processing time is the only job type that may cause a work 

overload, and hence it is unlikely that work overloads occur in a random job sequence.  

The transition probabilities of the macro Markov chain for all the cases are shown 

in Table 19, and the probability distributions for the total number of work overload 

occurrences are shown in Figure 28. 

Table 19: Macro Markov Chain Transition Probabilities 

Case P(WO|NWO) P(NWO|NWO) 

Case1 0.315 0.685 

Case2 0.121 0.879 

Case3 0.164 0.836 

Case4A 0.059 0.941 

Case5 0.000004 0.999996 

 

The probability mass for Case1, Case2, Case3, and Case4 is far from zero, and 

therefore it is unlikely that a random launching sequence will result in zero work overloads.  

However, for Case5, the probability of zero work overloads is 0.9958. For such cases, job 

sequence optimization is not necessary since most random launching sequence will most 

likely yield zero overloads.  

If the probability of zero work overloads is high then job sequencing optimization 

is not needed, however the workstation may be “overdesigned”, which is a poor use of 

limited resource (primarily space).  If the estimated chance of work overload occurrences 

is high, then job sequencing optimization may reduce but still result in an unacceptable 

number of work overload occurrences. In Section 4.4. the Markov chain model is used to 

predict whether sequencing optimization can give zero overloads so that workstation 
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resources are being used efficiently. The following section explores possible Markov chain 

model inaccuracies due to necessary Markov chain model assumptions 
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Figure 28: Multiple Cases - Probability Distribution of the Total Number of Workload Occurrences 
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4.3 Constant Demand Fraction Assumption 

In the Markov Chain model the probability of randomly selecting job type m (𝑑𝑚) 

remains constant but for a finite set of jobs this probability varies each time a job is 

launched. For instance, consider a job set with 100 jobs and two job types A and B in equal 

proportion. Table 20 shows the changes in job type probabilities after successive job 

launches. The first and the second column shows the number of type A and type B jobs in 

the job set. The third column shows the total number of jobs remaining. The fourth and the 

fifth columns show the probabilities of randomly selecting an A and B type job 

respectively. The last column shows the type of job selected and launched.  

Table 20: Probability Variation in a Job Set 

A B Total Number of Jobs Remaining PA PB Job Type That is Launched 

50 50 100 0.5 0.5 A 

49 50 99 0.495 0.505 B 

49 49 98 0.5 0.5 B 

49 48 97 0.505 0.495 B 

49 47 96 0.510 0.490  

 

As a second example, consider a set of 100 jobs with a single job having a 

processing time exceeding the cycle time (and the rest having processing times less than 

the cycle time).  The number of work overload occurrences for all sequences is zero. 

However, the Markov chain will estimate a non-zero probability of work overloads 

because there will always be a 0.01 probability of a randomly selecting the job type with 

a processing time greater than the cycle time.  

This assumption of stationary (constant) job type probabilities for the Markov chain 

model results in inaccuracies, and the magnitude of the inaccuracies depends on the 

number of jobs in a sequence. The effect of the number of jobs in a sequence on the 

accuracy of the probability distribution for the number of work overload occurrences 

(computed from the macro state Markov chain transition probabilities) is illustrated in this 

section.  
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Consider a new case, Case6 consisting of multiple job types having proportions as 

shown in Table 21. The cycle time is 10 time units, and the workstation length is 15 

distance units.  

Table 21: Case6 Job Composition 

Job 
Type 

Processing Time 
(Time Units) 

Demand Fraction 

A 9 0.1 

B 10 0.1 

C 11 0.2 

D 12 0.2 

E 13 0.2 

F 14 0.2 

 

It can be difficult to always find a provably optimal job launching sequence 

computationally because the job sequencing problem is a difficult combinatorial 

optimization problem (Xiaobo et al. (1997)). Instead, a pairwise exchange method is used 

to search for a sequence that minimizes the number of work overload occurrences for 

various test cases. The code for the pairwise exchange was written in C++. The minimum 

number of work overload occurrences found computationally are compared with the 

probability distribution for the number of work overload occurrences. The term ‘Minimum’ 

used henceforth refers to the lowest number of work overload occurrences obtained in 100 

iterations. 

Figure 29 shows the probability distribution for the number of work overload 

occurrences for Case6 and 100 jobs. The minimum number of work overload occurrences 

found using the pairwise exchange search algorithm is 24. According to the Markov chain 

result, the probability of 23 work overloads is 0.038, i.e. 0.038 * 100! launching sequences 

can give 23 overloads, which is not possible (assuming that the neighborhood search 

algorithm gives the best possible solution). Therefore, the probabilities for l < 24 are the 

imprecise results produced by the Markov Chain model if the job set is finite. The orange 

column in the Figure 29 shows the minimum number of work overload occurrences.  



75 

 

 

 

Figure 29: Case6 Probability Distribution for the Number of Work Overload 

Occurrences for 100 Jobs 

Figure 30 to Figure 34 show the probability distribution for the number of work 

overload occurrences for the same case when the number of jobs in a sequence is increased 

in steps of 100.  

 

Figure 30: Case6 Probability Distribution for the Number of Work Overload 

Occurrences for 200 Jobs 
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Figure 31: Case6 Probability Distribution for the Number of Work Overload 

Occurrences for 300 Jobs 

 

Figure 32: Case6 Probability Distribution for the Number of Work Overload 

Occurrences for 400 Jobs 
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Figure 33: Case6 Probability Distribution for the Number of Work Overload 

Occurrences for 500 Jobs 

 

Figure 34: Case6 Probability Distribution for the Number of Work Overload 

Occurrences for 600 Jobs 
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The change in job selection probability each time a job is launched is small for large job 

sets. Therefore, it is observed that as the number of jobs in a sequence increases the 

probability mass to the left of the orange bar decreases.  The minimum number of work 

overload occurrences obtained computationally for 100 to 600 jobs along with the 

cumulative probability of the total number of work overload occurrences less than the 

minimum number of work overload occurrences is shown in Table 22. 

 

Table 22: Case6 Minimum Work Overload Occurrences and Cumulative 

Probability 

Number of Jobs 
Minimum Work Overload 

Occurrences 
Cumulative 
Probability 

100 24 0.076 

200 48 0.030 

300 73 0.020 

400 98 0.013 

500 125 0.017 

600 150 0.011 

 

Four more cases were examined. The processing times of different job types, their demand 

fractions and the workstation lengths of these test cases are shown in Table 23. The cycle 

time for all these cases is 10 time units. 

Table 23: Job Compositions of Multiple Cases 

Case 
Processing 

Time 
(Time Units) 

Demand 
Fraction 

Workstation Length 
(Distance Units) 

Case7 
8 0.5 

18 
14 0.5 

Case8 

9 0.2 

20 

10 0.2 

12 0.2 

14 0.2 

17 0.2 

Case9 

8 0.1 

20 9 0.1 

10 0.1 
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Case 
Processing 

Time 
(Time Units) 

Demand 
Fraction 

Workstation Length 
(Distance Units) 

11 0.1 

12 0.1 

13 0.1 

14 0.1 

15 0.1 

16 0.1 

17 0.1 

Case10 

8 25 

13 10 25 

12 50 

 

The probabilities of the number of work overload occurrences are calculated, and the sum 

of probabilities of work overloads less than the minimum number of work overload 

occurrences (found computationally) for all the cases is presented in Figure 35. For 

instance, the area under the probability curve to the left of the orange column for the Case6 

when the number of jobs is 100 is 0.076 (refer to Figure 29). This probability mass 

gradually reduces to 0.005 when the number of jobs is increased to 600 (refer to Figure 

34). The variation in this probability mass for multiple cases is presented in Figure 35.  
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Figure 35: Multiple Cases – Cumulative Probability of the Total Number of Work 

Overload Occurrences  

In general, a decreasing trend in the cumulative probability mass exists as the number of 

jobs in a sequence is increased.  
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4.4 Supporting Workstation Design Decisions 

The models developed can be used to support initial workstation length and cycle 

time decisions. If the Markov chain model predicts a high probability of zero work 

overloads in random sequences then the workstation is likely too long for the cycle time 

for a predicted mix of job types. If the Markov chain predicts a very large number of work 

overloads then even with sequencing optimization, a large number of work overloads will 

occur and the workstation length should be increased. This section presents an application 

of the Markov chain model that helps identify when a given workstation length, cycle time, 

and job mix results in likely work overloads for random sequences, but zero work overloads 

when sequencing optimization is applied.  

The available time and the required time to complete all jobs at a workstation is as 

follows: 

 

Available Time = (Cycle Time ∗ Total Number of Jobs) + (Workstation Length −

Cycle Time)  

Work Content =  ∑ Processing Time

All Jobs

 

Excess Time = Available Time − Work Content 

 

Negative Excess Time implies that the available time is insufficient to process all 

tasks within the provided time and therefore, a workstation and job set combination having 

negative Excess Time will not have any sequence with zero work overloads. For a job set 

having positive Excess Time there may or may not exist a job sequence that gives zero work 

overloads. A workstation and different types of job sets can be categorized into three as 

shown in Table 24, where the second column shows the Excess Time for the job set and the 

last column shows the minimum number of work overload occurrences obtained using 

sequencing optimization (the neighborhood search algorithm in this research). 
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Table 24: Job Set Categories 

Category Excess Time Minimum 

1 ≥0 0 

2 ≥0 >0 

3 <0 >0 

 

The objective is to differentiate cases between the categories 1 and 2 without having to 

perform sequencing optimization.  New test cases that fall into either Category 1 or 

Category 2 were generated. The composition of the job sets and the lengths of the 

workstations are shown in Appendix 2. All cases that are considered until this point 

except Case5 fall into Category 3. The parameters that are varied in the test cases are the 

number of job types, processing times of the jobs, demand fractions and the workstation 

length. The cases with the same number and different letter differ in only one parameter, 

e.g., workstation length. The cycle time is 10 time units, and the number of jobs is 300 

for all of these cases. For visualization purpose, the test cases are represented on a three 

dimensional space having workstation length, number of job types and work content as 

the axes. Figure 36 shows a perspective view of the three-dimensional test case space 

and Figure 37 to Figure 39 show the orthographic projections of it. Work content is a 

function of two parameters, demand fraction and processing times of jobs. The 

relationship between these two parameters is shown in Figure 40. The test cases consist 

of numerous combinations of the demand fractions and processing times that are well 

spread out in the available space. There is no lower limit for job processing times 

however the maximum processing time of a job type in a job set should be such that the 

operator should be able to completely process it within the workstation boundaries if the 

job is operated from the upstream boundary. In all the test cases there is at least one job 

type that has a processing time more than the cycle time otherwise there would be no 

work overloads.  
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Figure 36: Three-Dimensional Visualization of Test Cases (300 Jobs) 

The lower limit for the workstation length is the largest processing time amongst all job 

types, and the upper limit is twice the cycle time. Most of the cases have low Excess Time. 

If the Excess Time is large then the test case would most likely be of category 1, but it 

becomes difficult to differentiate between the two cases when the Excess Time is small. 

Therefore most of the cases have work content close to the available time.  
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Figure 37: Orthographic Projection – I (300 Jobs) 

 

 

Figure 38: Orthographic Projection – II (300 Jobs) 
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Figure 39: Orthographic Projection – III (300 Jobs) 

 

 

Figure 40: Demand Fractions of Job Types 
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The figures indicate that the test cases have variability in their parameters and are not 

concentrated at a particular location in the three-dimensional space. 

  The Excess Time, the minimum number of work overload occurrences discovered 

computationally, and the probability P(WO|NWO) (from the macrostate Markov chain) is 

calculated for all test cases and is plotted on the graph in Figure 41. The vertical axis on 

the left represents Excess Time that is indicated by a green column for each test case. The 

same axis also represents the minimum number of work overload occurrences shown with 

red columns. The vertical axis on the right represents the value for P(WO|NWO) and is 

indicated by a blue dot, and test cases are represented on the horizontal axis. Cases can be 

categorized into Category 1 or Category 2 based on their P(WO|NWO) values as shown in 

Table 25. It is observed that Category 1 cases have low P(WO|NWO) as compared to the 

Category 2 cases. The maximum value of P(WO|NWO) in Category 1 cases is 0.0422, and 

the minimum value of P(WO|NWO) in Category 2 cases is 0.0566. An arbitrary cutoff value 

of P(WO|NWO) = 0.05 can be used to differentiate between cases.  

To check if this cutoff value is applicable for a different number of jobs, similar 

tests are conducted by increasing the number of jobs to 500, and the results are shown in 

Figure 42. P(WO|NWO) remains the same because it is independent of the number of jobs. 

The number of job types and workstation length remain the same but the Excess time and 

the minimum number of work overload occurrences change for all test cases. Refer to 

Appendix 3 to Appendix 6 for the three-dimensional visualization and its orthographic 

projections of the test cases. Figure 42 shows that even with an increased number of jobs, 

if P(WO|NWO) is more than 0.05, then the minimum number of work overloads is greater 

than zero and otherwise it is zero. 

In conclusion, based on the test cases studied, if P(WO|NWO) is large (more than 

0.05), the job sequencing problem will not give a sequence with no work overloads. To 

best utilize available workstation space a value for P(WO|NWO) that is close to 0.05 can 

be used as a guideline.  
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Figure 41: Excess Time, Minimum and P(WO|NWO) of Multiple Test Cases (300 Jobs)  
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Table 25: Multiple Category 1 and Category 2 Cases 

Category 
New Case 
Number 

Excess 
Time 

Minimum P(WO|NWO) 

1 

Case11 160 0 0.0245 

Case12 5 0 0.0422 

Case13A 79 0 0.0341 

Case13B 80 0 0.0264 

Case13C 81 0 0.0166 

Case13D 82 0 0.0127 

Case13E 83 0 0.0089 

Case13F 84 0 0.0068 

Case13F 85 0 0.0050 

Case14 408 0 0.0282 

Case15 1054 0 0.0007 

Case16 575 0 0.0019 

Case17 246 0 0.0018 

2 

Case18 15 3 0.1230 

Case19 9 9 0.1425 

Case20A 7 17 0.2287 

Case20B 8 12 0.2228 

Case20C 9 8 0.1457 

Case20D 10 5 0.1395 

Case20E 11 5 0.0975 

Case20F 12 4 0.0915 

Case20G 13 4 0.0713 

Case21A 15 36 0.2843 

Case21B 18 3 0.1281 

Case22 19 3 0.0568 
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Figure 42: Excess Time, Minimum and P(WO|NWO) of Multiple Test Cases (500 Jobs)
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this research, a new approach was established that approximates the probability 

distribution of the total number and the severity of work overload occurrences for a set of 

jobs that are launched down an assembly line workstation in a random order. To 

demonstrate the results, the model is applied to multiple test cases that are generated by 

varying processing times of job types, demand fraction of job types, the workstation length 

and the total number of jobs in the job set. By comparing the Markov chain model results 

with the simulation results of the assembly line workstation, it is observed that the model 

results are valid for the system being modeled. The model results are also compared with 

the minimum number of work overload occurrences obtained using a pairwise exchange 

search algorithm and it is observed that the accuracy of the model results is high when the 

number of jobs in the job set is large. This effect of the number of job types on accuracy is 

primarily because of the constant job type selection probability assumption in the Markov 

chain model. In general, the Markov chain model produces sufficiently accurate estimates 

of the number of work overload occurrences for a random launch sequence.  

The results obtained using the model can be used to redesign the workstation 

dimensions and the cycle time for efficient space utilization. If the model predicts high 

work overload occurrences, then job sequencing optimization may reduce them, but 

perhaps not enough to meet requirements. The Markov chain model can also be used to 

predict whether applying sequencing optimization can give zero overloads and to 

demonstrate this, 25 test cases were generated. By examining the model results, an arbitrary 

cutoff value of the microstate Markov chain is established. Using this cutoff value, the test 

cases that can give zero work overloads after applying sequencing optimization can be 

identified.  
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5.2 Future Research Scope 

The following are some recommendations that can be considered to extend this research:  

1. Examine the validity of the arbitrary cutoff value of the microstate Markov chain 

transition probability that differentiates Category 1 and Category 2 test cases for 

other combinations of workstation dimension, job type demand fractions, and 

processing times. 

2. Modify the Markov chain model for other strategies used to deal with the imminent 

work overload situation such as a side-by-side policy wherein the workstation 

operator and the utility worker work side-by-side on a job to avoid a work overload 

situation. 

3. Investigate the use of the Markov chain model for job types that have uncertainty 

in processing times with times taken from distributions other than a uniform 

distribution. 

4. Modify the Markov chain model such that it can be used to estimate other 

performance measures of interest such as conveyor stoppage time. 

5. Develop a similar model that could estimate operational inefficiencies for a random 

job launching sequence for an assembly line that consists of multiple workstations. 
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APPENDICES 

 

Appendix 1: Verification of (10) 

Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

0 0.0000 0.0000 

1 0.0000 0.0000 

2 0.0000 0.0000 

3 0.0000 0.0000 

4 0.0000 0.0000 

5 0.0000 0.0000 

6 0.0000 0.0000 

7 0.0000 0.0000 

8 0.0000 0.0000 

9 0.0000 0.0000 

10 0.0000 0.0000 

11 0.0000 0.0000 

12 0.0000 0.0000 

13 0.0000 0.0000 

14 0.0000 0.0000 

15 0.0000 0.0000 

16 0.0000 0.0000 

17 0.0000 0.0000 

18 0.0000 0.0000 

19 0.0000 0.0000 

20 0.0000 0.0000 

21 0.0000 0.0000 

22 0.0000 0.0000 

23 0.0000 0.0000 

24 0.0000 0.0000 

25 0.0000 0.0000 

26 0.0000 0.0000 

27 0.0000 0.0000 

28 0.0000 0.0000 

29 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

30 0.0000 0.0000 

31 0.0000 0.0000 

32 0.0000 0.0000 

33 0.0000 0.0000 

34 0.0000 0.0000 

35 0.0000 0.0000 

36 0.0000 0.0000 

37 0.0000 0.0000 

38 0.0000 0.0000 

39 0.0000 0.0000 

40 0.0000 0.0000 

41 0.0000 0.0000 

42 0.0000 0.0000 

43 0.0000 0.0000 

44 0.0000 0.0000 

45 0.0000 0.0000 

46 0.0000 0.0000 

47 0.0000 0.0000 

48 0.0000 0.0000 

49 0.0000 0.0000 

50 0.0000 0.0000 

51 0.0000 0.0000 

52 0.0000 0.0000 

53 0.0000 0.0000 

54 0.0000 0.0000 

55 0.0000 0.0000 

56 0.0000 0.0000 

57 0.0000 0.0000 

58 0.0000 0.0000 

59 0.0000 0.0000 

60 0.0000 0.0000 

61 0.0000 0.0000 

62 0.0000 0.0000 

63 0.0000 0.0000 

64 0.0000 0.0000 

65 0.0000 0.0000 

66 0.0000 0.0000 

67 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

68 0.0000 0.0000 

69 0.0000 0.0000 

70 0.0000 0.0000 

71 0.0000 0.0000 

72 0.0000 0.0000 

73 0.0000 0.0000 

74 0.0000 0.0000 

75 0.0000 0.0000 

76 0.0000 0.0000 

77 0.0000 0.0000 

78 0.0000 0.0000 

79 0.0000 0.0000 

80 0.0000 0.0000 

81 0.0000 0.0000 

82 0.0000 0.0000 

83 0.0000 0.0000 

84 0.0000 0.0000 

85 0.0000 0.0000 

86 0.0000 0.0000 

87 0.0000 0.0000 

88 0.0000 0.0000 

89 0.0000 0.0000 

90 0.0000 0.0000 

91 0.0000 0.0000 

92 0.0000 0.0000 

93 0.0000 0.0000 

94 0.0000 0.0000 

95 0.0000 0.0000 

96 0.0000 0.0000 

97 0.0000 0.0000 

98 0.0000 0.0000 

99 0.0000 0.0000 

100 0.0000 0.0000 

101 0.0000 0.0000 

102 0.0000 0.0000 

103 0.0000 0.0000 

104 0.0000 0.0000 

105 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

106 0.0001 0.0001 

107 0.0001 0.0001 

108 0.0001 0.0001 

109 0.0002 0.0002 

110 0.0003 0.0002 

111 0.0004 0.0004 

112 0.0005 0.0005 

113 0.0007 0.0007 

114 0.0010 0.0009 

115 0.0013 0.0013 

116 0.0017 0.0017 

117 0.0023 0.0022 

118 0.0029 0.0030 

119 0.0038 0.0038 

120 0.0048 0.0049 

121 0.0060 0.0059 

122 0.0074 0.0073 

123 0.0090 0.0091 

124 0.0109 0.0109 

125 0.0129 0.0130 

126 0.0152 0.0151 

127 0.0177 0.0176 

128 0.0204 0.0203 

129 0.0231 0.0233 

130 0.0259 0.0262 

131 0.0287 0.0288 

132 0.0315 0.0315 

133 0.0341 0.0340 

134 0.0364 0.0367 

135 0.0385 0.0384 

136 0.0403 0.0402 

137 0.0416 0.0419 

138 0.0424 0.0429 

139 0.0428 0.0426 

140 0.0427 0.0431 

141 0.0421 0.0418 

142 0.0411 0.0408 

143 0.0396 0.0397 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

144 0.0377 0.0377 

145 0.0356 0.0356 

146 0.0331 0.0331 

147 0.0305 0.0303 

148 0.0278 0.0276 

149 0.0250 0.0248 

150 0.0223 0.0224 

151 0.0196 0.0196 

152 0.0171 0.0171 

153 0.0147 0.0147 

154 0.0125 0.0126 

155 0.0106 0.0105 

156 0.0088 0.0088 

157 0.0073 0.0071 

158 0.0059 0.0060 

159 0.0048 0.0048 

160 0.0038 0.0038 

161 0.0030 0.0030 

162 0.0023 0.0023 

163 0.0018 0.0017 

164 0.0014 0.0013 

165 0.0010 0.0010 

166 0.0008 0.0008 

167 0.0006 0.0006 

168 0.0004 0.0004 

169 0.0003 0.0003 

170 0.0002 0.0002 

171 0.0002 0.0001 

172 0.0001 0.0001 

173 0.0001 0.0001 

174 0.0001 0.0001 

175 0.0000 0.0000 

176 0.0000 0.0000 

177 0.0000 0.0000 

178 0.0000 0.0000 

179 0.0000 0.0000 

180 0.0000 0.0000 

181 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

182 0.0000 0.0000 

183 0.0000 0.0000 

184 0.0000 0.0000 

185 0.0000 0.0000 

186 0.0000 0.0000 

187 0.0000 0.0000 

188 0.0000 0.0000 

189 0.0000 0.0000 

190 0.0000 0.0000 

191 0.0000 0.0000 

192 0.0000 0.0000 

193 0.0000 0.0000 

194 0.0000 0.0000 

195 0.0000 0.0000 

196 0.0000 0.0000 

197 0.0000 0.0000 

198 0.0000 0.0000 

199 0.0000 0.0000 

200 0.0000 0.0000 

201 0.0000 0.0000 

202 0.0000 0.0000 

203 0.0000 0.0000 

204 0.0000 0.0000 

205 0.0000 0.0000 

206 0.0000 0.0000 

207 0.0000 0.0000 

208 0.0000 0.0000 

209 0.0000 0.0000 

210 0.0000 0.0000 

211 0.0000 0.0000 

212 0.0000 0.0000 

213 0.0000 0.0000 

214 0.0000 0.0000 

215 0.0000 0.0000 

216 0.0000 0.0000 

217 0.0000 0.0000 

218 0.0000 0.0000 

219 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

220 0.0000 0.0000 

221 0.0000 0.0000 

222 0.0000 0.0000 

223 0.0000 0.0000 

224 0.0000 0.0000 

225 0.0000 0.0000 

226 0.0000 0.0000 

227 0.0000 0.0000 

228 0.0000 0.0000 

229 0.0000 0.0000 

230 0.0000 0.0000 

231 0.0000 0.0000 

232 0.0000 0.0000 

233 0.0000 0.0000 

234 0.0000 0.0000 

235 0.0000 0.0000 

236 0.0000 0.0000 

237 0.0000 0.0000 

238 0.0000 0.0000 

239 0.0000 0.0000 

240 0.0000 0.0000 

241 0.0000 0.0000 

242 0.0000 0.0000 

243 0.0000 0.0000 

244 0.0000 0.0000 

245 0.0000 0.0000 

246 0.0000 0.0000 

247 0.0000 0.0000 

248 0.0000 0.0000 

249 0.0000 0.0000 

250 0.0000 0.0000 

251 0.0000 0.0000 

252 0.0000 0.0000 

253 0.0000 0.0000 

254 0.0000 0.0000 

255 0.0000 0.0000 

256 0.0000 0.0000 

257 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

258 0.0000 0.0000 

259 0.0000 0.0000 

260 0.0000 0.0000 

261 0.0000 0.0000 

262 0.0000 0.0000 

263 0.0000 0.0000 

264 0.0000 0.0000 

265 0.0000 0.0000 

266 0.0000 0.0000 

267 0.0000 0.0000 

268 0.0000 0.0000 

269 0.0000 0.0000 

270 0.0000 0.0000 

271 0.0000 0.0000 

272 0.0000 0.0000 

273 0.0000 0.0000 

274 0.0000 0.0000 

275 0.0000 0.0000 

276 0.0000 0.0000 

277 0.0000 0.0000 

278 0.0000 0.0000 

279 0.0000 0.0000 

280 0.0000 0.0000 

281 0.0000 0.0000 

282 0.0000 0.0000 

283 0.0000 0.0000 

284 0.0000 0.0000 

285 0.0000 0.0000 

286 0.0000 0.0000 

287 0.0000 0.0000 

288 0.0000 0.0000 

289 0.0000 0.0000 

290 0.0000 0.0000 

291 0.0000 0.0000 

292 0.0000 0.0000 

293 0.0000 0.0000 

294 0.0000 0.0000 

295 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

296 0.0000 0.0000 

297 0.0000 0.0000 

298 0.0000 0.0000 

299 0.0000 0.0000 

300 0.0000 0.0000 

301 0.0000 0.0000 

302 0.0000 0.0000 

303 0.0000 0.0000 

304 0.0000 0.0000 

305 0.0000 0.0000 

306 0.0000 0.0000 

307 0.0000 0.0000 

308 0.0000 0.0000 

309 0.0000 0.0000 

310 0.0000 0.0000 

311 0.0000 0.0000 

312 0.0000 0.0000 

313 0.0000 0.0000 

314 0.0000 0.0000 

315 0.0000 0.0000 

316 0.0000 0.0000 

317 0.0000 0.0000 

318 0.0000 0.0000 

319 0.0000 0.0000 

320 0.0000 0.0000 

321 0.0000 0.0000 

322 0.0000 0.0000 

323 0.0000 0.0000 

324 0.0000 0.0000 

325 0.0000 0.0000 

326 0.0000 0.0000 

327 0.0000 0.0000 

328 0.0000 0.0000 

329 0.0000 0.0000 

330 0.0000 0.0000 

331 0.0000 0.0000 

332 0.0000 0.0000 

333 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

334 0.0000 0.0000 

335 0.0000 0.0000 

336 0.0000 0.0000 

337 0.0000 0.0000 

338 0.0000 0.0000 

339 0.0000 0.0000 

340 0.0000 0.0000 

341 0.0000 0.0000 

342 0.0000 0.0000 

343 0.0000 0.0000 

344 0.0000 0.0000 

345 0.0000 0.0000 

346 0.0000 0.0000 

347 0.0000 0.0000 

348 0.0000 0.0000 

349 0.0000 0.0000 

350 0.0000 0.0000 

351 0.0000 0.0000 

352 0.0000 0.0000 

353 0.0000 0.0000 

354 0.0000 0.0000 

355 0.0000 0.0000 

356 0.0000 0.0000 

357 0.0000 0.0000 

358 0.0000 0.0000 

359 0.0000 0.0000 

360 0.0000 0.0000 

361 0.0000 0.0000 

362 0.0000 0.0000 

363 0.0000 0.0000 

364 0.0000 0.0000 

365 0.0000 0.0000 

366 0.0000 0.0000 

367 0.0000 0.0000 

368 0.0000 0.0000 

369 0.0000 0.0000 

370 0.0000 0.0000 

371 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

372 0.0000 0.0000 

373 0.0000 0.0000 

374 0.0000 0.0000 

375 0.0000 0.0000 

376 0.0000 0.0000 

377 0.0000 0.0000 

378 0.0000 0.0000 

379 0.0000 0.0000 

380 0.0000 0.0000 

381 0.0000 0.0000 

382 0.0000 0.0000 

383 0.0000 0.0000 

384 0.0000 0.0000 

385 0.0000 0.0000 

386 0.0000 0.0000 

387 0.0000 0.0000 

388 0.0000 0.0000 

389 0.0000 0.0000 

390 0.0000 0.0000 

391 0.0000 0.0000 

392 0.0000 0.0000 

393 0.0000 0.0000 

394 0.0000 0.0000 

395 0.0000 0.0000 

396 0.0000 0.0000 

397 0.0000 0.0000 

398 0.0000 0.0000 

399 0.0000 0.0000 

400 0.0000 0.0000 

401 0.0000 0.0000 

402 0.0000 0.0000 

403 0.0000 0.0000 

404 0.0000 0.0000 

405 0.0000 0.0000 

406 0.0000 0.0000 

407 0.0000 0.0000 

408 0.0000 0.0000 

409 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

410 0.0000 0.0000 

411 0.0000 0.0000 

412 0.0000 0.0000 

413 0.0000 0.0000 

414 0.0000 0.0000 

415 0.0000 0.0000 

416 0.0000 0.0000 

417 0.0000 0.0000 

418 0.0000 0.0000 

419 0.0000 0.0000 

420 0.0000 0.0000 

421 0.0000 0.0000 

422 0.0000 0.0000 

423 0.0000 0.0000 

424 0.0000 0.0000 

425 0.0000 0.0000 

426 0.0000 0.0000 

427 0.0000 0.0000 

428 0.0000 0.0000 

429 0.0000 0.0000 

430 0.0000 0.0000 

431 0.0000 0.0000 

432 0.0000 0.0000 

433 0.0000 0.0000 

434 0.0000 0.0000 

435 0.0000 0.0000 

436 0.0000 0.0000 

437 0.0000 0.0000 

438 0.0000 0.0000 

439 0.0000 0.0000 

440 0.0000 0.0000 

441 0.0000 0.0000 

442 0.0000 0.0000 

443 0.0000 0.0000 

444 0.0000 0.0000 

445 0.0000 0.0000 

446 0.0000 0.0000 

447 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

448 0.0000 0.0000 

449 0.0000 0.0000 

450 0.0000 0.0000 

451 0.0000 0.0000 

452 0.0000 0.0000 

453 0.0000 0.0000 

454 0.0000 0.0000 

455 0.0000 0.0000 

456 0.0000 0.0000 

457 0.0000 0.0000 

458 0.0000 0.0000 

459 0.0000 0.0000 

460 0.0000 0.0000 

461 0.0000 0.0000 

462 0.0000 0.0000 

463 0.0000 0.0000 

464 0.0000 0.0000 

465 0.0000 0.0000 

466 0.0000 0.0000 

467 0.0000 0.0000 

468 0.0000 0.0000 

469 0.0000 0.0000 

470 0.0000 0.0000 

471 0.0000 0.0000 

472 0.0000 0.0000 

473 0.0000 0.0000 

474 0.0000 0.0000 

475 0.0000 0.0000 

476 0.0000 0.0000 

477 0.0000 0.0000 

478 0.0000 0.0000 

479 0.0000 0.0000 

480 0.0000 0.0000 

481 0.0000 0.0000 

482 0.0000 0.0000 

483 0.0000 0.0000 

484 0.0000 0.0000 

485 0.0000 0.0000 
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Number of Work 

Overload Occurrences 
Probability using (10) 

Probability using 

Monte Carlo 

Simulation 

486 0.0000 0.0000 

487 0.0000 0.0000 

488 0.0000 0.0000 

489 0.0000 0.0000 

490 0.0000 0.0000 

491 0.0000 0.0000 

492 0.0000 0.0000 

493 0.0000 0.0000 

494 0.0000 0.0000 

495 0.0000 0.0000 

496 0.0000 0.0000 

497 0.0000 0.0000 

498 0.0000 0.0000 

499 0.0000 0.0000 

500 0.0000 0.0000 

 

Appendix 2: Multiple Job Set and MMAL Compositions 

Category Case 
Processing 
Time (Time 

Units) 

Demand 
Fraction 

Workstation 
Length (Distance 

Units) 

1 
(Excess Time>=0, 

Minimum=0) 

Case11 

5 0.10 

20 

6 0.10 

7 0.10 

8 0.10 

9 0.10 

10 0.10 

11 0.10 

12 0.10 

13 0.10 

14 0.10 

Case16 

4 0.25 

14 
5 0.25 

6 0.25 

12 0.25 

Case12 
8 0.20 

15 
9 0.20 
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Category Case 
Processing 
Time (Time 

Units) 

Demand 
Fraction 

Workstation 
Length (Distance 

Units) 

10 0.20 

11 0.20 

12 0.20 

Case13A 

8 0.25 

14 
9 0.25 

10 0.25 

12 0.25 

Case13B 

8 0.25 

15 
9 0.25 

10 0.25 

12 0.25 

Case13C 

8 0.25 

16 
9 0.25 

10 0.25 

12 0.25 

Case13D 

8 0.25 

17 
9 0.25 

10 0.25 

12 0.25 

Case13E 

8 0.25 

18 
9 0.25 

10 0.25 

12 0.25 

Case13F 

8 0.25 

19 
9 0.25 

10 0.25 

12 0.25 

Case13G 

8 0.25 

20 
9 0.25 

10 0.25 

12 0.25 

Case14 

6 0.33 

18 7 0.33 

13 0.33 

Case15 

4 0.25 

14 5 0.25 

6 0.25 



111 

 

 

Category Case 
Processing 
Time (Time 

Units) 

Demand 
Fraction 

Workstation 
Length (Distance 

Units) 

11 0.25 

Case17 

7 0.10 

16 

8 0.30 

9 0.20 

10 0.20 

11 0.10 

12 0.10 

2 
(Excess Time>=0, 

Minimum>0) 

Case18 

5 0.04 

15 

6 0.13 

7 0.07 

8 0.09 

9 0.09 

10 0.12 

11 0.10 

12 0.12 

13 0.10 

14 0.14 

Case19 

5 0.04 

15 

6 0.16 

7 0.09 

8 0.11 

9 0.09 

10 0.14 

14 0.36 

Case20A 

5 0.17 

14 

6 0.17 

7 0.08 

12 0.30 

14 0.29 

Case20B 

5 0.17 

15 

6 0.17 

7 0.08 

12 0.30 

14 0.29 

Case20C 

5 0.17 

16 6 0.17 

7 0.08 
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Category Case 
Processing 
Time (Time 

Units) 

Demand 
Fraction 

Workstation 
Length (Distance 

Units) 

12 0.30 

14 0.29 

Case20D 

5 0.17 

17 

6 0.17 

7 0.08 

12 0.30 

14 0.29 

Case20E 

5 0.17 

18 

6 0.17 

7 0.08 

12 0.30 

14 0.29 

Case20F 

5 0.17 

19 

6 0.17 

7 0.08 

12 0.30 

14 0.29 

Case20G 

5 0.17 

20 

6 0.17 

7 0.08 

12 0.30 

14 0.29 

Case21A 

4 0.25 

15 8 0.16 

13 0.59 

Case21B 

4 0.25 

18 8 0.16 

13 0.59 

Case22 

4 0.21 

20 

10 0.21 

11 0.21 

12 0.21 

13 0.13 

14 0.03 

15 0.03 
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Appendix 3: Three Dimensional Visualization of Test Cases (500 Jobs) 
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Appendix 4: Orthographic Projection - I (500 Jobs) 
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Appendix 5: Orthographic Projection - II (500 Jobs) 
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Appendix 6: Orthographic Projection - III (500 Jobs) 
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The shape parameters of the probability distribution curve are investigated to check if they 

can be used to differentiate between various categories of jobs. A test case belonging to 

each category was randomly selected and the effect of the workstation length on the shape 

parameters was studied. The results are presented in  

 

Appendix 7 to Appendix 12. It is observed that the standard deviation of the probability 

distribution of the number of work overload occurrences of Category 1 case is lower than 

the Category 2 case. The mean of the probability distribution curve cannot be used for 

differentiating cases.  

 

Appendix 7: Case 13: Effect of Workstation Length on the Mean and Standard 

Deviation of the Probability Distribution of Work Overload Occurrences

 

 

Category Case
Number 

of Jobs

Workstation 

Length (Time 

Units)

Minimum
Mean of the Probability 

Distribution Curve

Standard Deviation of 

the Probability 

Distribution Curve

13 0 19.29 3.97

14 0 9.91 2.99

15 0 7.72 2.67

16 0 4.90 2.16

17 0 3.75 1.90

18 0 2.64 1.60

19 0 2.02 1.41

20 0 1.50 1.22

1 Case13 300
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Appendix 8: Case 13: Effect of Workstation Length on the Mean of the Probability 

Distribution of Work Overload Occurrences 

 

 

Appendix 9: Case 20: Effect of Workstation Length on the Mean and Standard 

Deviation of the Probability Distribution of Work Overload Occurrences 
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Category Case
Number 
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Workstation 
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Minimum
Mean of the Probability 

Distribution Curve

Standard Deviation of 

the Probability 

Distribution Curve

14 16 56.06 5.36

15 11 54.87 5.34

16 7 38.30 4.99

17 6 36.87 4.94

18 6 26.75 4.48

19 6 25.25 4.39

20 6 20.03 4.03

2 Case20 300
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Appendix 10: Case 20: Effect of Workstation Length on the Mean of the Probability 

Distribution of Work Overload Occurrences 

 

 

Appendix 11: Case 10: Effect of Workstation Length on the Mean and Standard 

Deviation of the Probability Distribution of Work Overload Occurrences 
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Number 
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Mean of the Probability 

Distribution Curve

Standard Deviation of 
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Distribution Curve

13 38 60.04 5.37

14 26 35.31 4.88

15 26 35.31 4.88

16 19 24.50 4.34

17 19 24.50 4.34

18 15 18.61 3.91

19 15 18.61 3.91

20 12 14.96 3.58

3 Case10 300
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Appendix 12: Case 10: Effect of Workstation Length on the Mean of the Probability 

Distribution of Work Overload Occurrences 

 

0

10

20

30

40

50

60

70

13 14 15 16 17 18 19 20

Workstation Length (DU)

Minimum Mean of the Probability Distribution Curve


