5,220 research outputs found
Recommended from our members
Prevalence and Correlates of Low-Grade Systemic Inflammation in Adult Psychiatric Inpatients: an electronic health record-based study
Low-grade inflammation is a risk factor for depression, psychosis and other major psychiatric disorders. It is associated with poor response to antidepressant and antipsychotics, and could potentially be a treatment target. However, there is limited data on the prevalence of low-grade inflammation in major psychiatric disorders, and on the characteristics of patients who show evidence of inflammation. We examined
the prevalence of low-grade inflammation, and associated sociodemographic and clinical factors in acute psychiatric inpatients.
An anonymised search of the electronic patient records of Cambridgeshire and Peterborough NHS Foundation Trust was used to identify patients aged 18 to 65 years who were hospitalised between 2013 and 2016 (inclusive). We excluded patients on antibiotics or oral steroids, or with missing data. Inflammation was defined using serum C-reactive protein (>3mg/L) or total white cell count (>9.4 x 109/L) as measured within 14 days of admission. Out of all 599 admissions, the prevalence of inflammation (serum CRP >3mg/L) in the ICD-10 diagnostic groups of psychotic disorders (F20-29), mood disorders (F30-39), neurotic disorders (F40-48) and personality disorders (F60-69) was 32%, 21%, 22% and 42%, respectively. In multivariable analyses, low-grade inflammation was associated with older age, black ethnicity, being single, self-harm, diagnoses of schizophrenia, bipolar disorder, current treatments with antidepressants, benzodiazepines, and with current treatment for medical comorbidities. A notable proportion of acutely unwell psychiatric patients from all ICD-10 major diagnostic groups show evidence of low-grade inflammation, suggesting inflammation may be relevant for all psychiatric disorders.GMK is supported by an Intermediate Clinical Fellowship from the Wellcome Trust (201486/Z/16/Z) and a Clinical Lecturer Starter Grant from the Academy of Medical Sciences, UK (grant no. 80354). PBJ acknowledges grant support from the Wellcome Trust (095844/Z/11/Z & 088869/Z/09/Z) and NIHR (RP-PG-0616-20003 and the Collaboration for Leadership in Applied Health Research & Care (CLAHRC) East of England)
Secure Full-Duplex Device-to-Device Communication
This paper considers full-duplex (FD) device-to-device (D2D) communications
in a downlink MISO cellular system in the presence of multiple eavesdroppers.
The D2D pair communicate sharing the same frequency band allocated to the
cellular users (CUs). Since the D2D users share the same frequency as the CUs,
both the base station (BS) and D2D transmissions interfere each other. In
addition, due to limited processing capability, D2D users are susceptible to
external attacks. Our aim is to design optimal beamforming and power control
mechanism to guarantee secure communication while delivering the required
quality-of-service (QoS) for the D2D link. In order to improve security,
artificial noise (AN) is transmitted by the BS. We design robust beamforming
for secure message as well as the AN in the worst-case sense for minimizing
total transmit power with imperfect channel state information (CSI) of all
links available at the BS. The problem is strictly non-convex with infinitely
many constraints. By discovering the hidden convexity of the problem, we derive
a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201
A Gossip Algorithm based Clock Synchronization Scheme for Smart Grid Applications
The uprising interest in multi-agent based networked system, and the numerous
number of applications in the distributed control of the smart grid leads us to
address the problem of time synchronization in the smart grid. Utility
companies look for new packet based time synchronization solutions with Global
Positioning System (GPS) level accuracies beyond traditional packet methods
such as Network Time Proto- col (NTP). However GPS based solutions have poor
reception in indoor environments and dense urban canyons as well as GPS antenna
installation might be costly. Some smart grid nodes such as Phasor Measurement
Units (PMUs), fault detection, Wide Area Measurement Systems (WAMS) etc.,
requires synchronous accuracy as low as 1 ms. On the other hand, 1 sec accuracy
is acceptable in management information domain. Acknowledging this, in this
study, we introduce gossip algorithm based clock synchronization method among
network entities from the decision control and communication point of view. Our
method synchronizes clock within dense network with a bandwidth limited
environment. Our technique has been tested in different kinds of network
topologies- complete, star and random geometric network and demonstrated
satisfactory performance
Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray
Pneumonia is a life-threatening disease, which occurs in the lungs caused by
either bacterial or viral infection. It can be life-endangering if not acted
upon in the right time and thus an early diagnosis of pneumonia is vital. The
aim of this paper is to automatically detect bacterial and viral pneumonia
using digital x-ray images. It provides a detailed report on advances made in
making accurate detection of pneumonia and then presents the methodology
adopted by the authors. Four different pre-trained deep Convolutional Neural
Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for
transfer learning. 5247 Bacterial, viral and normal chest x-rays images
underwent preprocessing techniques and the modified images were trained for the
transfer learning based classification task. In this work, the authors have
reported three schemes of classifications: normal vs pneumonia, bacterial vs
viral pneumonia and normal, bacterial and viral pneumonia. The classification
accuracy of normal and pneumonia images, bacterial and viral pneumonia images,
and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3%
respectively. This is the highest accuracy in any scheme than the accuracies
reported in the literature. Therefore, the proposed study can be useful in
faster-diagnosing pneumonia by the radiologist and can help in the fast airport
screening of pneumonia patients.Comment: 13 Figures, 5 tables. arXiv admin note: text overlap with
arXiv:2003.1314
Implementation of the Trigonometric LMS Algorithm using Original Cordic Rotation
The LMS algorithm is one of the most successful adaptive filtering
algorithms. It uses the instantaneous value of the square of the error signal
as an estimate of the mean-square error (MSE). The LMS algorithm changes
(adapts) the filter tap weights so that the error signal is minimized in the
mean square sense. In Trigonometric LMS (TLMS) and Hyperbolic LMS (HLMS), two
new versions of LMS algorithms, same formulations are performed as in the LMS
algorithm with the exception that filter tap weights are now expressed using
trigonometric and hyperbolic formulations, in cases for TLMS and HLMS
respectively. Hence appears the CORDIC algorithm as it can efficiently perform
trigonometric, hyperbolic, linear and logarithmic functions. While
hardware-efficient algorithms often exist, the dominance of the software
systems has kept those algorithms out of the spotlight. Among these hardware-
efficient algorithms, CORDIC is an iterative solution for trigonometric and
other transcendental functions. Former researches worked on CORDIC algorithm to
observe the convergence behavior of Trigonometric LMS (TLMS) algorithm and
obtained a satisfactory result in the context of convergence performance of
TLMS algorithm. But revious researches directly used the CORDIC block output in
their simulation ignoring the internal step-by-step rotations of the CORDIC
processor. This gives rise to a need for verification of the convergence
performance of the TLMS algorithm to investigate if it actually performs
satisfactorily if implemented with step-by-step CORDIC rotation. This research
work has done this job. It focuses on the internal operations of the CORDIC
hardware, implements the Trigonometric LMS (TLMS) and Hyperbolic LMS (HLMS)
algorithms using actual CORDIC rotations. The obtained simulation results are
highly satisfactory and also it shows that convergence behavior of HLMS is much
better than TLMS.Comment: 12 pages, 5 figures, 1 table. Published in IJCNC;
http://airccse.org/journal/cnc/0710ijcnc08.pdf,
http://airccse.org/journal/ijc2010.htm
Joint source and relay optimization for interference MIMO relay networks
This paper considers multiple-input multiple-output (MIMO) relay communication in multi-cellular (interference)
systems in which MIMO source-destination pairs communicate simultaneously. It is assumed that due to severe
attenuation and/or shadowing effects, communication links can be established only with the aid of a relay node. The
aim is to minimize the maximal mean-square-error (MSE) among all the receiving nodes under constrained source
and relay transmit powers. Both one- and two-way amplify-and-forward (AF) relaying mechanisms are considered.
Since the exactly optimal solution for this practically appealing problem is intractable, we first propose optimizing the
source, relay, and receiver matrices in an alternating fashion. Then we contrive a simplified semidefinite programming
(SDP) solution based on the error covariance matrix decomposition technique, avoiding the high complexity of the
iterative process. Numerical results reveal the effectiveness of the proposed schemes
- …
