73 research outputs found

    Natural Gas : Physical Properties and Combustion Features

    Get PDF

    Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Get PDF
    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend

    Optimization of formulation for surrogate fuels for diesel–biodiesel mixtures

    Get PDF
    Alternative or surrogate fuel is a carburant made up of a reduced number of constituents that emulate the characteristics and performance of a target fuel which may contain more than a thousand compounds. In order to overcome the composition complexity and permit the simulation of kinetic models, an optimization of the surrogate fuel composition is necessary to reproduce physical and chemical properties of a target fuel. The main objective of the present research is to optimize a formulation for an alternative fuel that emulates a target fossil diesel (B0), and an obtained biodiesel (B100) from a transesterification of cooking vegetable oil. To enhance the application of biodiesel as an alternative solution to depleting fossil fuel, mixtures of diesel and several percentages of biofuel are also considered as target fuels, considering 5%, 10%, 20%, 50% and 80% of biodiesel, denoted respectively: B5, B10, B20, B50 and B80. The target properties considered in this work are the density at 15 °C, the viscosity at 40 °C and the cetane number using a palette of 18 components selected from previous works. The numerical method of the Generalized Reduced Gradient (GRG) is used to optimize the defined objective function. The results obtained showed that the optimized surrogates for fossil diesel, biodiesel and their blending agree well with target properties and all the optimized alternatives are composed of only the same three constituents, namely: 1-methylnaphthalene, isocetane and n-eicosane

    Optimization of formulation for surrogate fuels for diesel–biodiesel mixtures

    Get PDF
    Alternative or surrogate fuel is a carburant made up of a reduced number of constituents that emulate the characteristics and performance of a target fuel which may contain more than a thousand compounds. In order to overcome the composition complexity and permit the simulation of kinetic models, an optimization of the surrogate fuel composition is necessary to reproduce physical and chemical properties of a target fuel. The main objective of the present research is to optimize a formulation for an alternative fuel that emulates a target fossil diesel (B0), and an obtained biodiesel (B100) from a transesterification of cooking vegetable oil. To enhance the application of biodiesel as an alternative solution to depleting fossil fuel, mixtures of diesel and several percentages of biofuel are also considered as target fuels, considering 5%, 10%, 20%, 50% and 80% of biodiesel, denoted respectively: B5, B10, B20, B50 and B80. The target properties considered in this work are the density at 15 °C, the viscosity at 40 °C and the cetane number using a palette of 18 components selected from previous works. The numerical method of the Generalized Reduced Gradient (GRG) is used to optimize the defined objective function. The results obtained showed that the optimized surrogates for fossil diesel, biodiesel and their blending agree well with target properties and all the optimized alternatives are composed of only the same three constituents, namely: 1-methylnaphthalene, isocetane and n-eicosane

    Modeling of a pyrolysis batch reactor using COMSOL Multiphysics

    Get PDF
    Plastic Pyrolysis is a thermal degradation process; it offers an important alternative energy. The aim of this study is to model a batch reactor to be used for plastic pyrolysis. Consequently, four experiments with different heating and cooling cycles are done using an empty pyrolysis batch reactor and four temperatures are measured at different locations on the reactor. On the other hand, the empty reactor is modeled and several simulations are done, using COMSOL Multiphysics software, under the same experimental conditions. By comparing the temperatures obtained from simulation to those measured experimentally, it is noticed that the results are very close with a maximum error of 4%, hence the model is validated

    Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines

    Get PDF
    International audienceTwo-zone model is one of the most interesting engine simulation tools, especially for SI engines. However, the pertinence of the simulation depends on the accuracy of the heat transfer model. In fact, an important part of the fuel energy is transformed to heat loss from the chamber walls. Also, knock appearance is closely related to heat exchange. However, in the previous studies using two-zone models, many choices are made for heat transfer evaluation and no choice influence study has been carried out, in the literature. The current study aims to investigate the effect of the choice of both the heat transfer correlation and burned zone heat transfer area calculation method and provide an optimized choice for a more efficient two-zone thermodynamic model, in the case of natural gas SI engines. For this purpose, a computer simulation is developed. Experimental measurements are carried out for comparison and validation. The effect of correlation choice has been first studied. The most known correlations have been tested and compared. Our experimental pressure results, supported for more general and reliable conclusions, by a literature survey of many other studies, based on measured heat transfer rates for several SI engines, are used for correlation selection. It is found that Hohenberg's correlation is the best choice. However, the influence of the burned zone heat transfer area calculation method is negligible

    Numerical Analysis of the Parameters Governing 3D Laminar Mixed Convection Flow in a Rectangular Channel with Imposed Wall Flux Density

    No full text
    International audienc

    EXPERIMENTAL INVESTIGATION ON THE EFFECTS OF RAW MATERIALS DEGRADATION ON PERFORMANCE, COMBUSTION AND EMISSIONS OF A SINGLE CYLINDER ENGINE RUNNING ON BIODIESEL FROM WASTE LIPIDS

    No full text
    22nd European International Biomass Conference - Setting the Course for a Biobased Economy, Hamburg, GERMANY, JUN 23-26, 2014International audienceIn this paper, a single cylinder air cooled for strokes direct injection diesel engine was used to compare biodiesel from fat trap grease (AFRBD) with biodiesel from waste cooking oil (WCOBD) and with diesel fuel. The main difference between both biodiesel samples resides in the presence of short chain and branched methyl esters on AFRBD, and in its lower non saturated fatty acids content. Comparison was based on engine performance, combustion parameters and emissions. AFRBD resulted on a slight drop of brake power at 1500 rpm but it increased engine efficiency at full load. Biodiesel reduced polluting emissions of the engine as compared to diesel fuel. WCOBD recorded higher reduction of unburned hydrocarbon, carbon monoxide and particulate matter emissions but it increased the nitric oxides emissions. AFRBD has the advantage of reducing all pollutant emissions, including nitric oxides
    • 

    corecore