10 research outputs found
RDF Knowledge Graph Visualization From a Knowledge Extraction System
In this paper, we present a system to visualize RDF knowledge graphs. These
graphs are obtained from a knowledge extraction system designed by
GEOLSemantics. This extraction is performed using natural language processing
and trigger detection. The user can visualize subgraphs by selecting some
ontology features like concepts or individuals. The system is also
multilingual, with the use of the annotated ontology in English, French, Arabic
and Chinese
Gestion de l'incertitude dans le processus d'extraction de connaissances Ă partir de textes
The increase of textual sources over the Web offers an opportunity for knowledge extraction and knowledge base creation. Recently, several research works on this topic have appeared or intensified. They generally highlight that to extract relevant and precise information from text, it is necessary to define a collaboration between linguistic approaches, e.g., to extract certain concepts regarding named entities, temporal and spatial aspects, and methods originating from the field of semantics' processing. Moreover, successful approaches also need to qualify and quantify the uncertainty present in the text. Finally, in order to be relevant in the context of the Web, the linguistic processing need to be consider several sources in different languages. This PhD thesis tackles this problematic in its entirety since our contributions cover the extraction, representation of uncertain knowledge as well as the visualization of generated graphs and their querying. This research work has been conducted within a CIFRE funding involving the Laboratoire d'Informatique Gaspard Monge (LIGM) of the Université Paris-Est Marne la Vallée and the GEOLSemantics start-up. It was leveraging from years of accumulated experience in natural language processing (GeolSemantics) and semantics processing (LIGM).In this context, our contributions are the following:- the integration of a qualifation of different forms of uncertainty, based on ontology processing, within the knowledge extraction processing,- the quantification of uncertainties based on a set of heuristics,- a representation, using RDF graphs, of the extracted knowledge and their uncertainties,- an evaluation and an analysis of the results obtained using our approachLa multiplication de sources textuelles sur le Web offre un champ pour l'extraction de connaissances depuis des textes et à la création de bases de connaissances. Dernièrement, de nombreux travaux dans ce domaine sont apparus ou se sont intensifiés. De ce fait, il est nécessaire de faire collaborer des approches linguistiques, pour extraire certains concepts relatifs aux entités nommées, aspects temporels et spatiaux, à des méthodes issues des traitements sémantiques afin de faire ressortir la pertinence et la précision de l'information véhiculée. Cependant, les imperfections liées au langage naturel doivent être gérées de manière efficace. Pour ce faire, nous proposons une méthode pour qualifier et quantifier l'incertitude des différentes portions des textes analysés. Enfin, pour présenter un intérêt à l'échelle du Web, les traitements linguistiques doivent être multisources et interlingue. Cette thèse s'inscrit dans la globalité de cette problématique, c'est-à -dire que nos contributions couvrent aussi bien les aspects extraction et représentation de connaissances incertaines que la visualisation des graphes générés et leur interrogation. Les travaux de recherche se sont déroulés dans le cadre d'une bourse CIFRE impliquant le Laboratoire d'Informatique Gaspard Monge (LIGM) de l'Université Paris-Est Marne la Vallée et la société GEOLSemantics. Nous nous appuyons sur une expérience cumulée de plusieurs années dans le monde de la linguistique (GEOLSemantics) et de la sémantique (LIGM).Dans ce contexte, nos contributions sont les suivantes :- participation au développement du système d'extraction de connaissances de GEOLSemantics, en particulier : (1) le développement d'une ontologie expressive pour la représentation des connaissances, (2) le développement d'un module de mise en cohérence, (3) le développement d'un outil visualisation graphique.- l'intégration de la qualification de différentes formes d'incertitude, au sein du processus d'extraction de connaissances à partir d'un texte,- la quantification des différentes formes d'incertitude identifiées ;- une représentation, à l'aide de graphes RDF, des connaissances et des incertitudes associées ;- une méthode d'interrogation SPARQL intégrant les différentes formes d'incertitude ;- une évaluation et une analyse des résultats obtenus avec notre approch
Uncertainty management in the knowledge extraction process from text
La multiplication de sources textuelles sur le Web offre un champ pour l'extraction de connaissances depuis des textes et à la création de bases de connaissances. Dernièrement, de nombreux travaux dans ce domaine sont apparus ou se sont intensifiés. De ce fait, il est nécessaire de faire collaborer des approches linguistiques, pour extraire certains concepts relatifs aux entités nommées, aspects temporels et spatiaux, à des méthodes issues des traitements sémantiques afin de faire ressortir la pertinence et la précision de l'information véhiculée. Cependant, les imperfections liées au langage naturel doivent être gérées de manière efficace. Pour ce faire, nous proposons une méthode pour qualifier et quantifier l'incertitude des différentes portions des textes analysés. Enfin, pour présenter un intérêt à l'échelle du Web, les traitements linguistiques doivent être multisources et interlingue. Cette thèse s'inscrit dans la globalité de cette problématique, c'est-à -dire que nos contributions couvrent aussi bien les aspects extraction et représentation de connaissances incertaines que la visualisation des graphes générés et leur interrogation. Les travaux de recherche se sont déroulés dans le cadre d'une bourse CIFRE impliquant le Laboratoire d'Informatique Gaspard Monge (LIGM) de l'Université Paris-Est Marne la Vallée et la société GEOLSemantics. Nous nous appuyons sur une expérience cumulée de plusieurs années dans le monde de la linguistique (GEOLSemantics) et de la sémantique (LIGM).Dans ce contexte, nos contributions sont les suivantes :- participation au développement du système d'extraction de connaissances de GEOLSemantics, en particulier : (1) le développement d'une ontologie expressive pour la représentation des connaissances, (2) le développement d'un module de mise en cohérence, (3) le développement d'un outil visualisation graphique.- l'intégration de la qualification de différentes formes d'incertitude, au sein du processus d'extraction de connaissances à partir d'un texte,- la quantification des différentes formes d'incertitude identifiées ;- une représentation, à l'aide de graphes RDF, des connaissances et des incertitudes associées ;- une méthode d'interrogation SPARQL intégrant les différentes formes d'incertitude ;- une évaluation et une analyse des résultats obtenus avec notre approcheThe increase of textual sources over the Web offers an opportunity for knowledge extraction and knowledge base creation. Recently, several research works on this topic have appeared or intensified. They generally highlight that to extract relevant and precise information from text, it is necessary to define a collaboration between linguistic approaches, e.g., to extract certain concepts regarding named entities, temporal and spatial aspects, and methods originating from the field of semantics' processing. Moreover, successful approaches also need to qualify and quantify the uncertainty present in the text. Finally, in order to be relevant in the context of the Web, the linguistic processing need to be consider several sources in different languages. This PhD thesis tackles this problematic in its entirety since our contributions cover the extraction, representation of uncertain knowledge as well as the visualization of generated graphs and their querying. This research work has been conducted within a CIFRE funding involving the Laboratoire d'Informatique Gaspard Monge (LIGM) of the Université Paris-Est Marne la Vallée and the GEOLSemantics start-up. It was leveraging from years of accumulated experience in natural language processing (GeolSemantics) and semantics processing (LIGM).In this context, our contributions are the following:- the integration of a qualifation of different forms of uncertainty, based on ontology processing, within the knowledge extraction processing,- the quantification of uncertainties based on a set of heuristics,- a representation, using RDF graphs, of the extracted knowledge and their uncertainties,- an evaluation and an analysis of the results obtained using our approac
RDF Knowledge Graph Visualization From a Knowledge Extraction System
International audienceIn this paper, we present a system to visualize RDF knowledge graphs. These graphs are obtained from a knowledge extraction system designed by GEOLSemantics. This extraction is performed using natural language processing and trigger detection. The user can visualize subgraphs by selecting some ontology features like concepts or individuals. The system is also multilingual, with the use of the annotated ontology in English, French, Arabic and Chinese
Evaluating Uncertainty in Textual Document
International audienceIn this work, we consider that a close collaboration between the research fields of Natural Language Processing and Knowledge Representation becomes essential to fulfill the vision of the Semantic Web. This will permit to retrieve information from vast amount of textual documents present on the Web and to represent these extractions in an amenable manner for querying and reasoning purposes. In such a context , uncertain, incomplete and ambiguous information must be handled properly. In the following, we present a solution that enables to qualify and quantify the uncertainty of extracted information from linguistic treatment
Gestion de l'incertitude dans le cadre d'une extraction des connaissances Ă partir de texte
International audienceLe domaine de l’extraction de connaissances à partir de texte nécessite des méthodes permettant de détecter et de manipuler l’incertitude. En effet, de nombreux textes contiennent des informations dont la véracité peut être remise en cause. Il convient alors de gérer de manière efficace ces informations afin de représenter les connaissances de manière explicite. Une première démarche consiste à identifier les différentes formes d’incertitudes pouvant intervenir durant un processus d’extraction. Puis, nous proposons une représentation RDF basée sur une ontologie développée destinée à modéliser l’incertitude
Evaluating Uncertainty in Textual Document
International audienceIn this work, we consider that a close collaboration between the research fields of Natural Language Processing and Knowledge Representation becomes essential to fulfill the vision of the Semantic Web. This will permit to retrieve information from vast amount of textual documents present on the Web and to represent these extractions in an amenable manner for querying and reasoning purposes. In such a context , uncertain, incomplete and ambiguous information must be handled properly. In the following, we present a solution that enables to qualify and quantify the uncertainty of extracted information from linguistic treatment
On The Potential Integration of an Ontology-Based Data Access Approach in NoSQL Stores
International audienc
On the Potential Integration of an Ontology-Based Data Access Approach in NoSQL Stores
International audienceNo SQL stores are emerging as an efficient alternative to relational database management systems in the context of big data. Many actors in this domain consider that to gain a wider adoption, several extensions have to be integrated. Some of them focus on the ways of proposing more schema, supporting adapted declarative query languages and providing integrity constraints in order to control data consistency and enhance data quality. We consider that these issues can be dealt with in the context of Ontology Based Data Access (OBDA). OBDA is a new data management paradigm that exploits the semantic knowledge represented in ontologies when querying data stored in a database. We provide a proof of concept of OBDA's ability to tackle these three issues in a social application related to the medical domain