34 research outputs found

    On the growth of cocompact hyperbolic Coxeter groups

    Get PDF
    For an arbitrary cocompact hyperbolic Coxeter group G with finite generator set S and complete growth function P(x)/Q(x), we provide a recursion formula for the coefficients of the denominator polynomial Q(x) which allows to determine recursively the Taylor coefficients and the pole behavior of the growth function of G in terms of its Coxeter subgroup structure. We illustrate this in the easy case of compact right-angled hyperbolic n-polytopes. Finally, we provide detailed insight into the case of Coxeter groups with at most 6 generators, acting cocompactly on hyperbolic 4-space, by considering the three combinatorially different families discovered and classified by Lanner, Kaplinskaya and Esselmann, respectively.Comment: 24 page

    Scissors Congruence, the Golden Ratio and Volumes in Hyperbolic 5-Space

    Get PDF
    By different scissors congruence techniques a number of dissection identities are presented between certain quasi-Coxeter polytopes, whose parameters are related to the golden section, and an ideal regular simplex in hyperbolic 5-space. As a consequence, several hyperbolic polyhedral 5-volumes can be computed explicitly in terms of Apéry's constant ζ(3) and the trilogarithmic valu

    On minimal covolume hyperbolic lattices

    Get PDF
    We study lattices with a non-compact fundamental domain of small volume in hyperbolic space H n . First, we identify the arithmetic lattices in Isom + H n of minimal covolume for even n up to 18. Then, we discuss the related problem in higher odd dimensions and provide solutions for n = 11 and n = 13 in terms of the rotation subgroup of certain Coxeter pyramid groups found by Tumarkin. The results depend on the work of Belolipetsky and Emery, as well as on the Euler characteristic computation for hyperbolic Coxeter polyhedra with few facets by means of the program CoxIter developed by Guglielmetti. This work complements the survey about hyperbolic orbifolds of minimal volume

    Hyperbolic orbifolds of minimal volume

    Get PDF
    We provide a survey of hyperbolic orbifolds of minimal volume, starting with the results of Siegel in two dimensions and with the contributions of Gehring, Martin and others in three dimensions. For higher dimensions, we summarise some of the most important results, due to Belolipetsky, Emery and Hild, by discussing related features such as hyperbolic Coxeter groups, arithmeticity and consequences of Prasad’s volume, as well as canonical cusps, crystallography and packing densities. We also present some new results about volume minimisers in dimensions six and eight related to Bugaenko’s cocompact arithmetic Coxeter groups

    Groupes discrets en géométrie hyperbolique: aspects effectifs

    Get PDF
    Cette thèse traite de deux problèmes en géométrie hyperbolique réelle et complexe. On étudie dans un premier temps des structures géométriques sur des espaces de modules de métriques plates a singularités coniques sur la sphère. D'après des travaux de W. Thurston, l'espace de modules des métriques plates sur S2 à n singularités coniques d'angles donnes admet une structure de variété hyperbolique complexe non complète, dont le complété métrique est une variété conique hyperbolique complexe. On étudie dans cette thèse des formes réelles de ces espaces complexes en se restreignant à des métriques invariantes par une involution. On décrit une structure hyperbolique réelle sur les espaces de modules de métriques plates symétriques à 6 (respectivement 8) singularités d'angles égaux. On décrit les composantes connexes de ces espaces comme ouverts denses d'orbifolds hyperboliques arithmétiques. On montre que les complétés métriques de ces composantes connexes admettent un recollement naturel, dont on étudie la structure. La deuxième partie de cette thèse traite des ensembles limites de groupes discrets d'isométries du plan hyperbolique complexe. On construit le premier exemple explicite de sous-groupe discret de PU (2; 1) dont l'ensemble limite est homéomorphe a l'éponge de Menger

    New contributions to hyperbolic polyhedra, reflection groups, and their commensurability

    Get PDF
    Les groupes de Coxeter hyperboliques forment une classe importante de sous-groupes discrets de Isom (Hn) : ils ont une présentation simple, satisfont des propriétés combinatoires et algébriques agréables, et fournissent des exemples de n-orbifolds hyperboliques de petit volume. Cependant, ils sont loin d'être classifiés, et plusieurs de leurs propriétés restent cryptiques. Ainsi, l'étude des groupes de Coxeter hyperboliques et des polyèdres de Coxeter correspondants est un domaine riche et diversifié, recelant de nombreux problèmes ouverts. Dans ce travail, on résout les trois problèmes suivants : (P1) Trouver une borne dimensionnelle supérieure pour l'existence d'hypercubes de Coxeter hyperboliques, et classifier les hypercubes de Coxeter idéaux. (P2) Trouver le rayon inscrit d'un simplexe tronqué hyperbolique. (P3) Classifier à commensurabilité près les groupes de Coxeter hyperboliques pyramidaux. Nos résultats sont inspirés de travaux précédents respectivement dus à Felikson-Tumarkin [21], Milnor [47], Vinberg [65], Maclachlan [39] et Johnson-Kellerhals-Ratcliffe-Tschantz [31]. Notre solution au problème (P2) a été partiellement publiée dans [29]. De plus, la solution du problème (P3) résulte d'un travail commun avec Rafael Guglielmetti et Ruth Kellerhals [24]

    The growth rates of ideal Coxeter polyhedra in hyperbolic 3-space

    Get PDF
    In [7], Kellerhals and Perren conjectured that the growth rates of the reflection groups given by compact hyperbolic Coxeter polyhedra are always Perron numbers. We prove that this conjecture holds in the context of ideal Coxeter polyhedra in H3. Our methods allow us to bound from below the growth rates of composite ideal Coxeter polyhedra by the growth rates of its ideal Coxeter polyhedral constituents

    Salem numbers, spectral radii and growth rates of hyperbolic Coxeter groups

    Full text link
    We show that not every Salem number appears as the growth rate of a cocompact hyperbolic Coxeter group. We also give a new proof of the fact that the growth rates of planar hyperbolic Coxeter groups are spectral radii of Coxeter transformations, and show that this need not be the case for growth rates of hyperbolic tetrahedral Coxeter groups.Comment: 23 pages, 3 figure

    Commensurability of hyperbolic Coxeter groups: theory and computation

    Get PDF
    For hyperbolic Coxeter groups of finite covolume we review and present new theoretical and computational aspects of wide commensurability. We discuss separately the arithmetic and the non-arithmetic cases. Some worked examples are added as well as a panoramic viewto hyperbolic Coxeter groups and their classification
    corecore