4 research outputs found

    Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum

    Get PDF
    OBJECTIVE: Primary mitochondrial diseases (PMDs) are heterogeneous disorders caused by inherited mitochondrial dysfunction. Classically defined neuropathologically as subacute necrotizing encephalomyelopathy, Leigh syndrome spectrum (LSS) is the most frequent manifestation of PMD in children, but may also present in adults. A major challenge for accurate diagnosis of LSS in the genomic medicine era is establishing gene-disease relationships (GDRs) for this syndrome with >100 monogenic causes across both nuclear and mitochondrial genomes. METHODS: The Clinical Genome Resource (ClinGen) Mitochondrial Disease Gene Curation Expert Panel (GCEP), comprising 40 international PMD experts, met monthly for 4 years to review GDRs for LSS. The GCEP standardized gene curation for LSS by refining the phenotypic definition, modifying the ClinGen Gene-Disease Clinical Validity Curation Framework to improve interpretation for LSS, and establishing a scoring rubric for LSS. RESULTS: The GDR with LSS across the nuclear and mitochondrial genomes was classified as definitive for 31/114 gene-disease relationships curated (27%); moderate for 38 (33%); limited for 43 (38%); and 2 as disputed (2%). Ninety genes were associated with autosomal recessive inheritance, 16 were maternally inherited, 5 autosomal dominant, and 3 X-linked. INTERPRETATION: GDRs for LSS were established for genes across both nuclear and mitochondrial genomes. Establishing these GDRs will allow accurate variant interpretation, expedite genetic diagnosis of LSS, and facilitate precision medicine, multi-system organ surveillance, recurrence risk counselling, reproductive choice, natural history studies and eligibility for interventional clinical trials. This article is protected by copyright. All rights reserved

    Survival following allogeneic transplant in patients with myelofibrosis.

    Get PDF
    Allogeneic hematopoietic cell transplantation (HCT) is the only curative therapy for myelofibrosis (MF). In this large multicenter retrospective study, overall survival (OS) in MF patients treated with allogeneic HCT (551 patients) and without HCT (non-HCT) (1377 patients) was analyzed with Cox proportional hazards model. Survival analysis stratified by the Dynamic International Prognostic Scoring System (DIPSS) revealed that the first year of treatment arm assignment, due to upfront risk of transplant-related mortality (TRM), HCT was associated with inferior OS compared with non-HCT (non-HCT vs HCT: DIPSS intermediate 1 [Int-1]: hazard ratio [HR] = 0.26, P < .0001; DIPSS-Int-2 and higher: HR, 0.39, P < .0001). Similarly, in the DIPSS low-risk MF group, due to upfront TRM risk, OS was superior with non-HCT therapies compared with HCT in the first-year post treatment arm assignment (HR, 0.16, P = .006). However, after 1 year, OS was not significantly different (HR, 1.38, P = .451). Beyond 1 year of treatment arm assignment, an OS advantage with HCT therapy in Int-1 and higher DIPSS score patients was observed (non-HCT vs HCT: DIPSS-Int-1: HR, 2.64, P < .0001; DIPSS-Int-2 and higher: HR, 2.55, P < .0001). In conclusion, long-term OS advantage with HCT was observed for patients with Int-1 or higher risk MF, but at the cost of early TRM. The magnitude of OS benefit with HCT increased as DIPSS risk score increased and became apparent with longer follow-up
    corecore