22 research outputs found

    Personality in Chimpanzees (Pan troglodytes): Exploring the Hierarchical Structure and Associations with the Vasopressin V1A Receptor Gene

    Get PDF
    One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level

    Identification of Variables Contributing to Superovulation Efficiency for Production of Transgenic Prairie Voles (Microtus ochrogaster)

    Get PDF
    Background: The prairie vole (Microtus ochrogaster) is an emerging animal model for biomedical research because of its rich sociobehavioral repertoire. Recently, lentiviral transgenic technology has been used to introduce the gene encoding the green fluorescent protein (GFP) into the prairie vole germline. However, the efficiency of transgenesis in this species is limited by the inability to reliably produce large numbers of fertilized embryos. Here we examined several factors that may contribute to variability in superovulation success including, age and parentage of the female, and latency to mating after being placed with the male. Methods: Females produced from 5 genetically distinct breeder lines were treated with 100 IU of pregnant mare serum gonadotrophin (PMSG) and immediately housed with a male separated by a perforated Plexiglas divider. Ovulation was induced 72 hr later with 30 IU of human chorionic gonadotropin (hCG) and 2 hrs later mating was allowed. Results: Superovulation was most efficient in young females. For example, females aged 6-11 weeks produced more embryos (14 +/- 1.4 embryos) as compared to females aged 12-20 weeks (4 +/- 1.6 embryos). Females aged 4-5 weeks did not produce embryos. Further, females that mated within 15 min of male exposure produced significantly more embryos than those that did not. Interestingly, there was a significant effect of parentage. For example, 12 out of 12 females from one breeder pair superovulated (defined as producing 5 or more embryos), while only 2 out of 10 females for other lines superovulated. Conclusions: The results of this work suggest that age and genetic background of the female are the most important factors contributing to superovulation success and that latency to mating is a good predictor of the number of embryos to be recovered. Surprisingly we found that cohabitation with the male prior to mating is not necessary for the recovery of embryos but is necessary to recover oocytes. This information will dramatically reduce the number of females required to generate embryos for transgenesis in this species

    Genetic Influences on Receptive Joint Attention in Chimpanzees (Pan troglodytes)

    Get PDF
    Despite their genetic similarity to humans, our understanding of the role of genes on cognitive traits in chimpanzees remains virtually unexplored. Here, we examined the relationship between genetic variation in the arginine vasopressin V1a receptor gene (AVPR1A) and social cognition in chimpanzees. Studies have shown that chimpanzees are polymorphic for a deletion in a sequence in the 59 flanking region of the AVPR1A, DupB, which contains the variable RS3 repetitive element, which has been associated with variation in social behavior in humans. Results revealed that performance on the social cognition task was significantly heritable. Furthermore, males with one DupB1 allele performed significantly better and were more responsive to socio-communicative cues than males homozygous for the DupB- deletion. Performance on a non-social cognition task was not associated with the AVPR1A genotype. The collective findings show that AVPR1A polymorphisms are associated with individual differences in performance on a receptive joint attention task in chimpanzees

    PRTFDC1 Is a Genetic Modifier of HPRT-Deficiency in the Mouse

    Get PDF
    Lesch-Nyhan disease (LND) is a severe X-linked neurological disorder caused by a deficiency of hypoxanthine phosphoribosyltransferase (HPRT). In contrast, HPRT-deficiency in the mouse does not result in the profound phenotypes such as self-injurious behavior observed in humans, and the genetic basis for this phenotypic disparity between HPRT-deficient humans and mice is unknown. To test the hypothesis that HPRT deficiency is modified by the presence/absence of phosphoribosyltransferase domain containing 1 (PRTFDC1), a paralog of HPRT that is a functional gene in humans but an inactivated pseudogene in mice, we created transgenic mice that express human PRTFDC1 in wild-type and HPRT-deficient backgrounds. Male mice expressing PRTFDC1 on either genetic background were viable and fertile. However, the presence of PRTFDC1 in the HPRT-deficient, but not wild-type mice, increased aggression as well as sensitivity to a specific amphetamine-induced stereotypy, both of which are reminiscent of the increased aggressive and self-injurious behavior exhibited by patients with LND. These results demonstrate that PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse and could therefore have important implications for unraveling the molecular etiology of LND

    Identification of variables contributing to superovulation efficiency for production of transgenic prairie voles (<it>Microtus ochrogaster</it>)

    No full text
    Abstract Background The prairie vole (Microtus ochrogaster) is an emerging animal model for biomedical research because of its rich sociobehavioral repertoire. Recently, lentiviral transgenic technology has been used to introduce the gene encoding the green fluorescent protein (GFP) into the prairie vole germline. However, the efficiency of transgenesis in this species is limited by the inability to reliably produce large numbers of fertilized embryos. Here we examined several factors that may contribute to variability in superovulation success including, age and parentage of the female, and latency to mating after being placed with the male. Methods Females produced from 5 genetically distinct breeder lines were treated with 100 IU of pregnant mare serum gonadotrophin (PMSG) and immediately housed with a male separated by a perforated Plexiglas divider. Ovulation was induced 72 hr later with 30 IU of human chorionic gonadotropin (hCG) and 2 hrs later mating was allowed. Results Superovulation was most efficient in young females. For example, females aged 6-11 weeks produced more embryos (14 +/- 1.4 embryos) as compared to females aged 12-20 weeks (4 +/- 1.6 embryos). Females aged 4-5 weeks did not produce embryos. Further, females that mated within 15 min of male exposure produced significantly more embryos than those that did not. Interestingly, there was a significant effect of parentage. For example, 12 out of 12 females from one breeder pair superovulated (defined as producing 5 or more embryos), while only 2 out of 10 females for other lines superovulated. Conclusions The results of this work suggest that age and genetic background of the female are the most important factors contributing to superovulation success and that latency to mating is a good predictor of the number of embryos to be recovered. Surprisingly we found that cohabitation with the male prior to mating is not necessary for the recovery of embryos but is necessary to recover oocytes. This information will dramatically reduce the number of females required to generate embryos for transgenesis in this species.</p

    Personality in Chimpanzees (<i>Pan troglodytes</i>): Exploring the Hierarchical Structure and Associations with the Vasopressin V1A Receptor Gene

    No full text
    <div><p>One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (<i>AVPR1A</i>), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of <i>AVPR1A</i> polymorphisms on hierarchical personality profiles at a higher-order level.</p></div

    Sex by AVPR1A interactions on (low) Alpha/Stability.

    No full text
    <p><i>Note.</i> Mean factor scores (± SE) for the (low) Alpha/Stability factor score for male and female DupB −/− and DupB +/− chimpanzees.</p

    Varimax Rotated exploratory factor analysis of Chimpanzee Personality Questionnaire: Three factor solution.

    No full text
    <p><i>Note. N = </i>174. DIS = Disinhibition. PE = Positive Emotionality. NE/low Dom = Negative Emotionality/low Dominance. Loadings ≥.50 shown in <b>boldface.</b> The order in which factors were extracted is reflected in the factor numbers.</p

    Hierarchical structure of chimpanzee personality.

    No full text
    <p><i>Note.</i> Order of factors extracted indicated by factor labels (e.g., F1 = first factor extracted). Dis = Disinhibition. NE/Dom = Negative Emotionality/Dominance. PE = Positive Emotionality. C = Conscientiousness. Dom = Dominance. A = Agreeableness. E = Extraversion. I = Intellect. Only significant (p<.05) paths shown.</p
    corecore