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METHODOLOGY Open Access

Identification of variables contributing to
superovulation efficiency for production of
transgenic prairie voles (Microtus ochrogaster)
Alaine C Keebaugh1*, Meera E Modi1, Catherine E Barrett1, Chengliu Jin2 and Larry J Young1

Abstract

Background: The prairie vole (Microtus ochrogaster) is an emerging animal model for biomedical research because
of its rich sociobehavioral repertoire. Recently, lentiviral transgenic technology has been used to introduce the gene
encoding the green fluorescent protein (GFP) into the prairie vole germline. However, the efficiency of transgenesis
in this species is limited by the inability to reliably produce large numbers of fertilized embryos. Here we examined
several factors that may contribute to variability in superovulation success including, age and parentage of the
female, and latency to mating after being placed with the male.

Methods: Females produced from 5 genetically distinct breeder lines were treated with 100 IU of pregnant mare
serum gonadotrophin (PMSG) and immediately housed with a male separated by a perforated Plexiglas divider.
Ovulation was induced 72 hr later with 30 IU of human chorionic gonadotropin (hCG) and 2 hrs later mating was
allowed.

Results: Superovulation was most efficient in young females. For example, females aged 6-11 weeks produced
more embryos (14 +/- 1.4 embryos) as compared to females aged 12-20 weeks (4 +/- 1.6 embryos). Females aged
4-5 weeks did not produce embryos. Further, females that mated within 15 min of male exposure produced
significantly more embryos than those that did not. Interestingly, there was a significant effect of parentage. For
example, 12 out of 12 females from one breeder pair superovulated (defined as producing 5 or more embryos),
while only 2 out of 10 females for other lines superovulated.

Conclusions: The results of this work suggest that age and genetic background of the female are the most
important factors contributing to superovulation success and that latency to mating is a good predictor of the
number of embryos to be recovered. Surprisingly we found that cohabitation with the male prior to mating is not
necessary for the recovery of embryos but is necessary to recover oocytes. This information will dramatically reduce
the number of females required to generate embryos for transgenesis in this species.

Keywords: Prairie vole, Superovulation, Social behavior, Transgenic, Animal model

Background
The socially monogamous prairie vole (Microtus ochra-
gaster) is an excellent model organism for understanding
the genetics and neurobiology regulating social bonding
and other behaviors associated with monogamy [1],
which are not exhibited by polygamous laboratory

mouse and rat species. Because prairie voles can be sys-
tematically outbred they are ideal for the study of indi-
vidual variation in neurochemistry and sociobehavioral
traits [2,3]. Over two decades of research in this species
has provided insights into the neurobiological basis of
social attachment [4,5] and nurturing behavior [3,6-8],
and voles have served as a model of how social experi-
ence effects adult social behavior[9], depression [10,11]
and cardiac function [12]. Discoveries in prairie voles
are beginning to inform novel treatment strategies for
psychiatric disorders with impairments in social behavior
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[13,14]. The prairie vole is of great interest for biomed-
ical research and the ability to genetically manipulate
this non-traditional animal model would allow for the
study of diseases associated with social deficits in a more
behaviorally relevant species.
There is an ongoing effort within the prairie vole re-

search community to develop comprehensive genomic
resources to facilitate biomedical research in this model
organism, including a 10X BAC library [15,16], a cyto-
genetic and genetic linkage map [17], and the genome is
forthcoming. Recently, lentiviral mediated transgenic
technology was used to introduce the green fluorescent
protein (GFP) gene into the prairie vole germline, as a
proof of principle [18]. Progress is being made combin-
ing this approach with RNAi technology to silence gene
expression, but the inefficiency of superovulation and
embryo transfer has been a significant impediment to
further use of this technology to explore genetic
mechanisms of behavior. Further, the powerful technol-
ogy of gene targeting using homologous recombination
has not yet been applied to the prairie vole. The future
success of these transgenic technologies in this species
requires reliable methods of superovulation that yield
large numbers of viable oocytes and embryos with nor-
mal developmental potential.
Superovulation is a procedure used to produce a large

number of developmentally synchronized embryos and
protocols based on administration of gonadotrophic hor-
mones have been standardized in species such as mouse
[19], rat [20,21], pig [22], cow [23], rabbit [24] and goat
[25]. However, the responsiveness of each species to
superovulation treatment varies and must be optimized
to account for species differences [26,27]. Within the la-
boratory mouse, optimal age, hormone dose, and other
factors vary between strains [28]. Further, among rats
there is also considerable variation between laboratories
with respect to the choice of strain, optimal age, hor-
mone and hormone dose [29,30].
In addition to the prairie vole’s unusual social system

(characterized by social monogamy, formation of
extended families, and cooperative breeding) [31,32],
their reproductive physiology differs significantly from
traditional laboratory rodents [33,34]. Prairie voles are
unusual in that they are more responsive to social factors
rather than environmental cues to reach estrus [33-35].
Behavioral estrus in the prairie vole occurs 1-3 days after
the female is introduced to a novel male or male urine
and ovulation is typically induced following mating
[33,36,37]. Prairie vole’s mate repeatedly for 24 h (3-31
bouts) [38] and successful reproduction in this species
requires prolonged contact with a male [39,40]. The so-
cial cues initiating the ovarian development are olfactory
[41,42]. Estrus synchronization, superovulation and
fertilization represent a significant challenge for the

efficient production of transgenic prairie voles. Since
prairie voles are not currently commercially available,
meaning that donor females are often limiting, it is es-
sential to understand the variables that can contribute to
successful embryo harvesting. In our own experience, in-
consistency in the success of superovulation and
fertilization has been a significant barrier to efficient
transgenesis. Thus, the main goal of this study was to
explore some of the variables that contribute to supero-
vulation success in the prairie vole. We examine several
factors that are known to contribute to variability in
superovulatory success in other species including age of
female, latency to mate following exposure to a male,
and parental lineage of the female. Further, the single
published study inducing superovulation in the prairie
vole incorporates separated cohabitation with a male
combined with hormone administration [18]; however,
the need for this extra step (i.e. separated cohabitation)
is just a hypothesis. Thus, we test the importance of in-
cluding this extra step. We describe in detail the method
for inducing synchronized ovulation via hormonal ma-
nipulation (pregnant mare serum gonadotrophin /
human chorionic gonadotropin) without the need for
sociosexual manipulation, a time intensive procedure
that requires specialized housing.

Methods
Subjects
Subjects were sexually naive female prairie voles 4-
20 weeks old, and stud males were adult (90–365 days
of age), sexually experienced prairie voles. All prairie
voles were generated from an in-house breeding colony
originally derived from Illinois prairie voles. After wean-
ing at 21 days of age, subjects were housed in same sex
pairs or trios with water and Purina rabbit chow pro-
vided ad libitum under a 14:10 light:dark cycle with
lights on at 7 am. All experiments were done in accord-
ance to the Institutional Animal Care and Use Commit-
tee at Emory University.

Superovulation protocol: separated cohabitation &
hormone treatment
Prairie voles do not display spontaneous ovarian activity
or ovulation. Exposure to olfactory scents from a male is
necessary to induce sexual receptivity and follicle develop-
ment under nonhormonally-primed conditions [34,36,42].
Once receptive, ovulation occurs only after 10 or more
hours of pairing after mating takes place [38]. To induce
receptivity and synchronize ovulation in multiple animals,
each naive female was either housed in a cage with a sexu-
ally experienced stud male but separated from him by a
Plexiglass divider or returned to her home cage. Prior to
pairing, to increase the number of mature follicles, females
were administered 100 IU of PMSG intraperitoneally [43]
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at 3 PM immediately before being placed into a separated
cohabitation with the stud male. Seventy-two hours later
females were administered 30 IU IP of hCG at 3 PM to in-
duce ovulation [43]. Two hours later at 5 PM the divider
was removed to allow mating. In experiment 1, control
animals were injected with sterile saline on the same time
schedule as PMSG and hCG as described above. As previ-
ously shown for the polygamous Japanese field vole,
Microtus montebelli [43], Experiment 1 demonstrates that
this hormone regimen is effective at inducing superovula-
tion in the prairie vole in the absence of pre-exposure to a
male (e.g. separated cohabitation). Much of this data, how-
ever, was collected retrospectively; thus, in experiments 2
and 3 the hormone and separated cohabitation was held
constant in order to explore the contribution of other
variables. It should be noted that this high hormone dose
was chosen based on pilot studies testing various PMSG/
hCG doses (5 IU/5 IU as is done in mice and rats, 25 IU/
25 IU, 50 IU/25 IU and 75 IU/25 IU) which failed to reli-
ably induce superovulation (Keebaugh and Young, unpub-
lished data).

Oocyte and embryo harvesting
Seventeen hours following administrations of hCG
females were sacrificed using CO2 asphyxiation (approxi-
mately 8 AM), their oviducts removed and placed into M2
media (Millipore, Billerica, MA). Under a stereoscope, a
32 gauge needle was placed into the infundibulum and
oviducts were flushed with ~0.3 ml M2 media. Harvested
embryos were stored in M16 media (Millipore) micro-
drops under mineral oil at 37 °C and 5% CO2.

Experiment 1. Effectiveness of hormone administration
and pre-exposure to a male on oocyte and embryo
production
Two studies were conducted to determine the import-
ance of hormone administration and pre-exposure to a
male on oocyte (no mating) and embryo (mating) pro-
duction. For each experiment, females 9-10 weeks of age
i) were given either saline/saline or PMSG/hCG and ii)
underwent either separated cohabitation or were singly
housed prior to saline or hCG treatment (n = 15/treat-
ment). Superovulation and oocyte/embryo harvesting
protocols were done as described above. Females produ-
cing no oocytes/embryos were considered not to have
ovulated; females producing 1-6 oocytes/embryos were
classified as having ovulated; females producing more
than 7 oocytes/embryos were classified as having super-
ovulated since the typical litter sizes are 3-5 pups.
In experiment 1a we examined oocyte production;

thus, females did not mate. Treatment group 1.1 (G1.1)
served as the control. They received saline, did not mate,
and were singly housed. To determine if hormone ad-
ministration and/or pre-exposure to a male would lead

to differences in the number of oocytes produced, treat-
ment group 1.2 (G 1.2) and treatment group 1.3 (G 1.3)
females both received hormone but G1.2 females were
singly housed while G1.3 females were pre-exposed to a
male via separated cohabitation.
In experiment 1b we looked at embryo production; thus,

females did mate. Females in treatment group 2.1 (G2.1)
received saline and were pre-exposed to a male. Treatment
group 2.2 (G2.2) and treatment group 2.3 (G2.3) females
both received hormone but G2.2 females were singly
housed while G2.3 females were pre-exposed to a male.

Experiment 2. Importance of female age and occurrence
of mating as indicators of superovulatory success
Females ranging in age from 4-20 weeks old were given
PMSG/hCG according to the superovulation protocol
described. Mating was scored as occurring or not occur-
ing during the first 15 minutes after removing the div-
ider and embryos were collected the following morning
beginning at 8 AM.

Experiment 3. Role of female parentage in superovulatory
efficiency
Previous studies have identified variation in response to
superovulation (i.e. high versus low responders) across
substrains of mice. Among Illinois derived laboratory
prairie vole colonies it has been reported that about half
of females exposed to males for 2-3 days will fail to show
lordosis [44]. Our prairie vole colony is derived from Illi-
nois and maintained as an outbred population; thus we
are interested in identifying if genetic background contri-
butes to variation in superovulatory response and ultim-
ately genetic lines optimal for inducing superovulation.
Females 7-11 weeks of age from five breeder pairs
(N= 36; BP1= 7, BP2= 7, BP3= 7, BP4= 9, BP5= 6) were
given PMSG/hCG according to the superovulation proto-
col described above.

Statistical analysis
For experiment 1 the Freeman-Halton extension of Fisher’s
exact test was used to compute two-tailed probabilities of
obtaining a distribution of values in a 3x3 contingency table
for each experimental group. For oocyte and embryo
production, statistical analysis was used to determine 1)
is hormone priming critical for superovulation and 2) is
pre-exposure to a male important. For experiment 2 re-
gression analysis was used to determine the predictive
value of female age (n = 85) on the number of embryos
recovered. A chi-square test was used to determine if the
occurrence of mating within the first 15 minutes of male
access (n = 85) contributed to superovulatory response.
For experiment 3 one-way ANOVAs were run to com-
pare the number of embryos produced between breeder

Keebaugh et al. Reproductive Biology and Endocrinology 2012, 10:54 Page 3 of 9
http://www.rbej.com/content/10/1/54



pairs. Hochberg’s GT2 test was used for post hoc analysis
when significant effects were detected.

Experiment 4. Generation of transgenic prairie voles
Production of lentivirus. We used the pLenti DEST vec-
tor (Gateway cloning, Invitrogen) which contains a mU6
driven shRNA and a CMV driven GFP coding sequence.
The shRNA was annealed and ligated into the pENTR/
U6 kan vector using the oligos 50-CACCGTGGATCA
CGCTTGCCGTCTACATTGCGAACAATGTAGACGG
CAAGC GTGATCCA-30 and 50- aaaaTGGATCACGC
TTGCCGTCTACATTGTTCGCAATGTAGACGGCAA
GCGTGATCCAC-30. The resulting pENTR/U6 kan +
oligos vector was recombined using the gateway kit with
the pLenti DEST vector.
To produce lentivirus, the viral vector was cotransfected

with plasmid p(Δ)8.9 and pVSVG into HEK 293FT pack-
aging cells. Supernatant was collected and concentrated
by ultracentrifugation. The resulting concentration of in-
fectious particles was determined by expression of GFP in
HEK293FT cells plated at a density of 2.5 × 105 per well in
a six-well plate. Titer was determined by multiplying the
number of GFP-positive cell colonies by the dilution factor
and presented as colony-forming units (cfu/ml). We ali-
quoted high-titer virus (1× 109 cfu/ml; 5ul per tube) and
stored it at -80 C until use.

Production of sterile stud males. Sexually experienced
adult male prairie voles were vasectomized and used to
induce pseudopregnancy. An incision was made at the
caudal end of the abdominal cavity, and the vas deferens
were located and cauterized. Males were allowed to re-
cover for 2 weeks and then cohabitated with a female for
4 weeks to ensure sterility. Only confirmed sterile males
were used to induce pseudopregnancy. Vasectomized
males were used in multiple experiments and retired
once they reached 1 year of age.
Production of Psuedopregnant recipient females. Sur-

rogate females between 4 and 6 months of age under-
went separated cohabitation with a vasectomized male at
the same time that superovulated females were paired
(3 PM) and administered PMSG (see superovulation
protocol). The divider was removed 72 hours later at
5 PM. Mating was confirmed visually, and only females
who mated received transferred embryos.
Perivitelline injection of lentiviral vector and embryo

transfer. High-titer lentiviral vector (~1 × 109 infectious
units/ml) was mixed with polybrene for a final concen-
tration of 8 ug/ml, and approximately 100 pl of vector
mixture was injected into the perivitelline space using a
1- to 2- um micropipette (as described in Donaldson et al.,
2009). Injected embryos were transferred to a single ovi-
duct of psuedopregnant females via the infindibulum.
After embryo transfer, surrogate females were placed
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back in the cage with the vasectommized male partner.
Surrogate females were checked for pups starting 18 days
after embryo transfer. All pups were born 22-23 days
after transfer.
Genotyping by PCR. Genomic DNA was purified from

ear-punch tissue using the Gentra Puregene Kit (Quia-
gen, Valencia, GA). Transgene presence was assayed
using forward primer: 5′-caagcagggagctagaacgattc-3′
and reverse primer 5′-caagaacccaaggaacaaagctcc-3′ with
the following condiditions: 95 C for 10 min, 30 cycles
(95 C for 30s, 55 C for 40s, 72 C for 50s), 72 C for
10 min, and 4 C hold. The resulting product was sepa-
rated out on a 2% agarose gel, and the presence of a
422-bp fragment indicated amplification of the gfp gene.

Results
Experiment 1. Effectiveness of sociosexual manipulation
and hormone administration on ovulatory response and
embryo production
In studies where it is desired to collect oocytes, for ex-
ample in IVF, some exposure to a male is necessary;
however, for studies where embryos are desired, for ex-
ample lentiviral mediated transgensis, pre-exposure to a
male is not necessary. For oocyte collection, pre-
exposure to a male and hormone treatment are neces-
sary for superovulation success (p = 0.03, Fisher’s exact
test) (Figure 1a). However, for embryo collection, only
hormone administration (p = 0.012, Fisher’s exact test) is
necessary for superovulation success (Figure 1b).

Experiment 2. Importance of female age and occurrence
of mating as indicators of superovulatory success
Regression analysis indicated that female age (p = 0.001,
r2 = 0.357) is a significant factor contributing to variation
in superovulatory response (Figure 2a). Further, the
females that mated within 15 minutes of exposure to the
male superovulated more than those that did not
(χ2 = 20.82, df = 2, p = 0.00003, Figure 2b).

Experiment 3. Role of parentage in superovulatory
efficiency
Given the variation in ovulatory response seen in prairie
voles upon exposure to a male as well as the significant
strain variation in mice (see discussion), we were inter-
ested in the influence of parentage on superovulatory
success in the prairie vole. There was a significant effect
of parentage on superovulatory response (F(4,31) = 9.373,

p = 0.001, one-way ANOVA). Post hoc analysis revealed
that breeder pair 5 responded more efficiently than all
other breeder pairs (p = 0.039, Figure 3).

Experiment 4. Generation of transgenic prairie voles
Germline transgenic prairie voles were produced by
infecting single-cell embryos with high-titer lentiviral
vectors (as described by Donaldson et al., 2009). A total
62 embryos were collected from two experiments from 6
females (10.3 embryos per female). We implanted 30
uninjected embryos and 20 injected embryos into pseu-
dopregnant females. Of these, 4 pups were born from
uninjected embryos (13.3%) and 3 from injected
embryos (15%). Of the 3 injected embryos, only one in-
dividual carried the transgene, as verified by PCR
(Figure 4b).

Discussion
Here we demonstrate that this superovulation method is
a viable and effective technique for generating germline
transgenic prairie voles. Specifically, we show that pre-
exposure to a male in combination with PMSG/hCG is
necessary to induce superovulation in the prairie vole
for the collection of oocytes (in the absence of mating);
however, pre-exposure to a male is not necessary for the
collection of embryos in this speices (presence of mat-
ing) (Figure 2). The implications of this finding suggest
that when fertilized embryos are needed for transgenesis
the extra time and resources needed for separated co-
habitation are not necessary as reported previously [18];
however, to generate large numbers of oocytes, for ex-
ample with in vitro fertilization, separated cohabitation
is necessary. Thus, some exposure to a male cue is
required to achieve ovulation even in the presence of
PMSG/hCG. The unusual reproductive physiology of the
prairie vole leads to subtle differences that need to be
considered when using different types of transgenic
technologies.
In addition to social manipulation, other variables

known to differ among species, as well as substrains of
mice, were examined. The efficiency of superovulation
within the prairie vole varies with female age, parentage
and latency to first mating bout. Superovulation was
most efficient in young females. Notably females aged 6-
11 weeks produced a mean of 14 +/- 1.4 embryos while
females aged 12-20 weeks produced only a mean of 4
+/- 1.6 embryos. Females that mated within 15 min of

(See figure on previous page.)
Figure 1 Impact of hormone administration and separated cohabitation on superovulatory response in the presence and absence of
mating. The GFP expressing lentiviral vector harboring a shRNA targeting oxtr mRNA at nucleotide site 607 is shown in (A) and was injected into
the perivetilline space of single-cell embryos harvested from pregnant female prairie voles. (B) Polymerase chain reaction analysis indicates the
presence of the GFP transgene in a single founder animal.
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access to the male produced significantly more embryos
than those that did not. Thus, the latency to mate is a
good indicator of oviduction status. Further, there was a
significant effect of parentage. For example, 9 out of 9

females from breeder pair 5 superovulated (defined as
producing 7 or more embryos), while only 1 out of 6
females superovulated from breeder pair 1. This suggests
that some parental lineages of prairie voles are more
sensitive to this superovulation paradigm than others.
The experiments here suggest that age and genetic back-
ground of the female are important factors contributing
to superovulatory success, and that occurrence of mating
is a good predictor of the number of embryos to be
recovered. Further, this work cannot distinguish between
the effects of environmental factors as discussed below.
This information will dramatically reduce the number of
females required, as well as the time and the equipment
investment needed to generate a large number of
embryos for future gene manipulation studies in this
species.
Why is there variability in ovulatory response? Previ-

ous studies using Illinois derived prairie vole populations
have shown that approximately 50% of female prairie
voles exposed to males for 2-3 days fail to display lordo-
sis [44] and therefore did not mate or ovulate. In the
present study 60% of females exposed to males for 3 days
(separated cohabitation only, group 2.1) ovulated. When
females underwent the superovulation paradigm 80% of
the females showed an ovulatory responses, with 52.5%
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of those females superovulating (group 2.3). This sug-
gests that the superovulation protocol decreases the
variability previously seen in mating and ovulatory re-
sponse; however, some of the variation remains un-
accounted for. Such variation could be explained by
environmental and/or genetic differences among individ-
ual females.
It is possible that the social environment in the natal

nest (i.e. parental nurturing behavior, juvenile-juvenile
interactions) could be factors that result in long-lasting
neurochemical changes that increase reproductive po-
tential as adults. For example females are more likely to
engage in affiliative behavior as adults if they remain in
the natal nest after weaning [45]. The presence of the
father in the natal nest also increases their propensity to
form a partner preference as adults [46,47]. These stud-
ies suggest that the social environment during develop-
ment, perhaps when the pups are interacting with their
parents and siblings, is critical for shaping factors that
result in long-lasting neurochemical changes that impact
reproductive potential as adults.
In addition to environmental factors, genetic back-

ground could also be playing a role in the variation seen

in ovulatory response among female prairie voles. In la-
boratory Mus species, the average number of embryos
induced by superovulation is highly strain-dependent.
Females of the strains B6, BALB/cByJ, 129/SvJ, CBA/CaJ,
SJL/J, C58/J are considered high responders to superovu-
lation and can be induced to ovulate 40-60 embryos
while females of the strains A/J, C3H/HeJ, BALB/cJ,
129/J 129/ReJ, DBA/2 J, C57L/J are considered low
responders and produce at most 15 embryos per mouse
[28]. This suggests that subtle differences in genotype
can have dramatic consequences on the expression of
this particular reproductive trait. Studies in female
prairie voles have shown that there is a graded ovulatory
response to prolonged social stimulation and that some
females show exceptional ovulatory sensitivity following
mating with only 6-12 hours of male exposure [38]. In
the present study 100% of females from breeder pair 5
superovulated while only 16% of females from breeder
pair 1 superovulated, demonstrating that some lineages
of prairie voles are more sensitive to this superovulation
paradigm than others. Prairie voles are maintained as an
outbreed population; however, as transgenesis in this
species matures it may become necessary to establish
optimal breeding lines for superovulation and embryo
production as has been done in the mouse.

Conclusion
In conclusion, the present study has identified a superovu-
lation and mating paradigm that allows for the recovery of
a large number of developmentally synchronized oocytes
and embryos that can be used for the production of trans-
genic prairie voles. However, this paradigm is not perfect
and variation in ovulatory response still exists. Several
variables warrant further studies. First, the diet provided
to a prairie vole breeding colony may have important con-
sequences on the reproductive responsiveness of offspring.
Second, increasing the hours of light per day (for example
from 14:10 to 18:6) may increase the ovulatory response
of hormone treated females. And, finally it may prove ne-
cessary to establish optimal donor and recipient strains as
prairie vole transgenesis matures.
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Figure 4 Generation of transgenic prairie vole. Mean number of
embryos recovered per superovulated female derived from distinct
breeder pairs. The numbers of females examined per breeder pair
(BP) are as follows: 7 for BP1, 7 for pair BP2, 7 for pair BP3, 9 for pair
BP4, and 6 for pair BP5. Posthoc analysis indicates that BP 5 is
significantly more sensitive to the superovulation paradigm than the
other parental lineages. This data demonstrates that genetic
background influences superovulation efficiency in the prairie vole.
Error bars are represented as + SEM. Asterisk represents a significant
p-value.
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