2,977 research outputs found

    Mass enhancement, correlations, and strong coupling superconductivity in the beta-pyrochlore KOs2O6

    Full text link
    To assess electron correlation and electron-phonon coupling in the recently discovered beta-pyrochlores KOs2O6 and RbOs2O6, we have performed specific heat measurements in magnetic fields up to 14 T. We present data from high quality single crystalline KOs2O6, showing that KOs2O6 is a strong coupling superconductor with a coupling parameter lambda_ep \approx 1.0 to 1.6 (RbOs2O6: lambda_ep \approx 1). The estimated Sommerfeld coefficient of KOs2O6, gamma=76 to 110 mJ/(mol K^2), is twice that of RbOs2O6 [gamma=44 mJ/(mol K^2)]. Using strong-coupling corrections, we extract useful thermodynamic parameters of KOs2O6. Quantifying lambda_ep allows us to determine the mass enhancement over the calculated band electronic density of states. A significant contribution in addition to the electron-phonon term of lambda_c=1.7 to 4.3 is deduced. In an effort to understand the origin of the enhancement mechanism, we also investigate an unusual energetically low-lying phonon. There are three phonon modes per RbOs2O6, suggestive of the phonon source being the rattling motion of the alkali ion. This dynamic instability of the alkali ions causes large scattering of the charge carriers which shows up in an unusual temperature dependence of the electrical resistivity.Comment: Accepted for publication in PR

    Average Relaxations of Extremal Problems

    Get PDF
    In this paper extremal problems that include averaging operation in constraints and objective are considered. The relaxation caused by a replacement of a problem without averaging with a problem that includes averaging is formally defined and investigated. Canonical form for nolinear programming problem with averaging is constructed and its conditions for optimality are derived. It is shown how optimality conditions for optimal control problems with various types of objectives and constraints can be derived using its averaged relaxation.averaging; constraint relaxation; nonlinear programming; optimal control problem; optimality conditions

    Optimal Dispatch in Electricity Markets

    Get PDF
    The problem of calculating the optimal dispatch and prices in a single-period electricity auction in a wholesale electricity market is considered here. The novel necessary and sufficient conditions of optimality for this problem are derived and computational algorithms for solving these conditions are constructed.optimal dispatch; electricity market; nonlinear programming; non-convex problems; dynamic programming

    Rational Theories of 2D Gravity from the Two-Matrix Model

    Full text link
    The correspondence claimed by M. Douglas, between the multicritical regimes of the two-matrix model and 2D gravity coupled to (p,q) rational matter field, is worked out explicitly. We found the minimal (p,q) multicritical potentials U(X) and V(Y) which are polynomials of degree p and q, correspondingly. The loop averages W(X) and \tilde W(Y) are shown to satisfy the Heisenberg relations {W,X} =1 and {\tilde W,Y}=1 and essentially coincide with the canonical momenta P and Q. The operators X and Y create the two kinds of boundaries in the (p,q) model related by the duality (p,q) - (q,p). Finally, we present a closed expression for the two two-loop correlators and interpret its scaling limit.Comment: 24 pages, preprint CERN-TH.6834/9
    • 

    corecore