1,784 research outputs found

    Development of sedentary behavior across childhood and adolescence : longitudinal analysis of the Gateshead Millennium Study

    Get PDF
    Background In many parts of the world policy and research interventions to modify sedentary behavior of children and adolescents are now being developed. However, the evidence to inform these interventions (e.g. how sedentary behavior changes across childhood and adolescence) is limited. This study aimed to assess longitudinal changes in sedentary behavior, and examine the degree of tracking of sedentary behavior from age 7y to 15y. Methods Participants were part of the Gateshead Millennium Study cohort. Measures were made at age 7y (n = 507), 9y (n = 510), 12y (n = 425) and 15y (n = 310). Participants were asked to wear an ActiGraph GT1M and accelerometer epochs were defined as sedentary when recorded counts were ≤25 counts/15 s. Differences in sedentary time and sedentary fragmentation were examined using the Friedman test. Tracking was examined using Spearman’s correlation coefficients and trajectories over time were assessed using multilevel linear spline modelling. Results Median daily sedentary time increased from 51.3 % of waking hours at 7y to 74.2 % at 15y. Sedentary fragmentation decreased from 7y to 15y. The median number of breaks/hour decreased from 8.6 to 4.1 breaks/hour and the median bout duration at 50 % of the cumulative sedentary time increased from 2.4 min to 6.4 min from 7y to 15y. Tracking of sedentary time and sedentary fragmentation was moderate from 7y to 15y however, the rate of change differed with the steepest increases/decreases seen between 9y and 12y. Conclusion In this study, sedentary time was high and increased to almost 75 % of waking hours at 15y. Sedentary behavior became substantially less fragmented as children grew older. The largest changes in sedentary time and sedentary fragmentation occurred between 9y to 12y, a period which spans the transition to secondary school. These results can be used to inform future interventions aiming to change sedentary behavior

    The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

    Get PDF
    We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Using an orthogonal regression technique, we find no evidence for evolution in the slope or intrinsic scatter of the relation since z~1.5, finding both to be consistent with previous measurements at z~0.1. However, the normalisation is seen to evolve negatively with respect to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09} (T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero evolution case. We see milder, but still negative, evolution with respect to self-similar when using a bisector regression technique. We compare our results to numerical simulations, where we fit simulated cluster samples using the same methods used on the XCS data. Our data favour models in which the majority of the excess entropy required to explain the slope of the L_X-T relation is injected at high redshift. Simulations in which AGN feedback is implemented using prescriptions from current semi-analytic galaxy formation models predict positive evolution of the normalisation, and differ from our data at more than 5 sigma. This suggests that more efficient feedback at high redshift may be needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added references to match published versio

    Quantum Scalar Field on the Massless (2+1)-Dimensional Black Hole Background

    Get PDF
    The behavior of a quantum scalar field is studied in the metric ground state of the (2+1)-dimensional black hole of Ba\~nados, Teitelboim and Zanelli which contains a naked singularity. The one-loop BTZ partition function and the associate black hole effective entropy, the expectation value of the quantum fluctuation as well as the renormalized expectation value of the stress tensor are explicitly computed in the framework of the ζ\zeta-function procedure. This is done for all values of the coupling with the curvature, the mass of the field and the temperature of the quantum state. In the massless conformally coupled case, the found stress tensor is used for determining the quantum back reaction on the metric due to the scalar field in the quantum vacuum state, by solving the semiclassical Einstein equations. It is finally argued that, within the framework of the 1/N expansion, the Cosmic Censorship Hypothesis is implemented since the naked singularity of the ground state metric is shielded by an event horizon created by the back reaction.Comment: 18 pages, RevTeX, no figures, minor changes, final version accepted for publication in Phys. Rev.

    The structure of Green functions in quantum field theory with a general state

    Full text link
    In quantum field theory, the Green function is usually calculated as the expectation value of the time-ordered product of fields over the vacuum. In some cases, especially in degenerate systems, expectation values over general states are required. The corresponding Green functions are essentially more complex than in the vacuum, because they cannot be written in terms of standard Feynman diagrams. Here, a method is proposed to determine the structure of these Green functions and to derive nonperturbative equations for them. The main idea is to transform the cumulants describing correlations into interaction terms.Comment: 13 pages, 6 figure
    • …
    corecore