25,100 research outputs found

    Axisymmetric shells

    Get PDF
    UNIVAC 1108 computer program for solving static response characteristics of axisymmetric shell

    Flow through a wire-form transpiration-cooled vane

    Get PDF
    Results of recent research to develop techniques for analyzing coolant flow in transpiration-cooled vanes are summarized. Flow characteristics of the wire-form porous material are correlated; the effects on the flow characteristics of oxidation, coolant temperature, gas crossflow, and airfoil curvature are evaluated. An analytical method is presented for predicting coolant flows and pressures in a strut-supported vane

    Analysis and application of minimum variance discrete time system identification

    Get PDF
    An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm

    Analysis and application of minimum variance discrete time system identification

    Get PDF
    An on-line minimum variance parameter identifier was developed which embodies both accuracy and computational efficiency. The new formulation resulted in a linear estimation problem with both additive and multiplicative noise. The resulting filter is shown to utilize both the covariance of the parameter vector itself and the covariance of the error in identification. It is proven that the identification filter is mean square covergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm

    Local strain redistribution corrections for a simplified inelastic analysis procedure based on an elastic finite-element analysis

    Get PDF
    Strain redistribution corrections were developed for a simplified inelastic analysis procedure to economically calculate material cyclic response at the critical location of a structure for life prediction proposes. The method was based on the assumption that the plastic region in the structure is local and the total strain history required for input can be defined from elastic finite-element analyses. Cyclic stress-strain behavior was represented by a bilinear kinematic hardening model. The simplified procedure predicts stress-strain response with reasonable accuracy for thermally cycled problems but needs improvement for mechanically load-cycled problems. Neuber-type corrections were derived and incorporated in the simplified procedure to account for local total strain redistribution under cyclic mechanical loading. The corrected simplified method was used on a mechanically load-cycled benchmark notched-plate problem. The predicted material response agrees well with the nonlinear finite-element solutions for the problem. The simplified analysis computer program was 0.3% of the central processor unit time required for a nonlinear finite-element analysis

    On local total strain redistribution using a simplified cyclic inelastic analysis based on an elastic solution

    Get PDF
    Strain redistribution corrections were developed for a simplified inelastic analysis procedure to economically calculate material cyclic response at the critical location of a structure for life prediction purposes. The method was based on the assumption that the plastic region in the structure is local and the total strain history required for input can be defined from elastic finite element analyses. Cyclic stress-strain behavior was represented by a bilinear kinematic hardening model. The simplified procedure has been found to predict stress-strain response with reasonable accuracy for thermally cycled problems but needs improvement for mechanically load cycled problems. This study derived and incorporated Neuber type corrections in the simplified procedure to account for local total strain redistribution under cyclic mechanical loading. The corrected simplified method was exercised on a mechanically load cycled benchmark notched plate problem. Excellent agreement was found between the predicted material response and nonlinear finite element solutions for the problem. The simplified analysis computer program used 0.3 percent of the CPU time required for a nonlinear finite element analysis

    Cyclic creep analysis from elastic finite-element solutions

    Get PDF
    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code

    The effect of finite field size on classification and atmospheric correction

    Get PDF
    The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy

    ¿Cómo se deberían estructurar las instituciones y los mercados financieros? Análisis y opciones de diseño de sistemas financieros

    Get PDF
    (Disponible en idioma inglés únicamente) En este trabajo se analizan las consecuencias de estructuras financieras alternativas para la eficiencia y la estabilidad financieras. La atención se centra en la estructura organizativa de los bancos. Las estructuras bancarias alternativas varían desde bancos especializados de ámbito restringido hasta bancos universales de ámbito mucho más amplio. Cada estructura bancaria se evalúa según su capacidad de satisfacer los objetivos de eficiencia y estabilidad en la estabilidad del sistema financieros, las economías de escala y alcance, la competencia, evitar los excesos regulatorios, los conflictos de intereses y la manipulación política, el control empresarial y la gestión de crisis financieras, y el control monetario. Ninguna reforma sirve para todos los países por igual y ninguna reforma garantiza por sí sola el logro o el mantenimiento de los objetivos.

    Experimental Simulation of the Interaction of Biased Solar Arrays with the Space Plasma

    Get PDF
    The phenomenon of unexpectedly large leakage currents collected by small exposed areas of high voltage solar arrays operating in a plasma environment was investigated. Polyimide (Kapton) was the insulating material used in all tests. Both positive bias (electron collection) and negative bias (ion collection) tests were performed. A mode change in the electron collection mechanism was associated with a glow discharge process and was found to be related to the neutral background density. Results indicate that the glow discharge collection mode does not occur in a space environment where the background density is considerably lower than that of the vacuum facility used
    corecore