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Abstrac'

An on-line minimum variance parameter identi-
fier is ieveloped which embodies both accuracy
and computational efficiency. The formulation re-
sults in a linear estimation problem with both
additive and multiplicative noise. The resulting
filter which utilizes both the covariance of the
parameter vector itself and the covariance of the
error in identification is proven to be mean
square _onvergent and sean square consistent. The
MV parameter identification scheme is then used to
construct s stable state and parameter estimation
sl;;orithm.

i. introduction

:n designing adaptive control systems, it is
necessary to determine whether to implement an
explicit system in which on-line parameter identi-
fier is needed	 or an implicit system which
ices not require explicit parameter identification
Recent studies have indicated preference for ey -
plicit designs whenever the process to be con-
trolled has non-minizru= phase characteristics
and: or high gain and large bandwidth limita-
tions. (1,2)

The ieveloment of such an adaptive control
system requires the use of an iientification
scheme that _s -_apable of supplying parameter
estimates at an accuracy and rate	 ecified by the
_ontroller characteristics. Because a digital
adaptive controller uses elements of the iiscret-
zed matrices, identification of these elements
and not the continuous physical s ystem parameters
should be considered. c`irthe rmore, identification

the paraneters of a continuous system e.g.,
stability derivatives) from iiscrete iata results
in a proble"t with many severe nonlinesrities.

1 4 near system identification using the input
and noisy measurements of the output can be
generally =sat as a state estimation problem with
both additive and muitiplIcstion noise (Am).
These terms will in fact be functions of the same
noise sequence. The continuous optimal nonlinear
filer as ierived by Kushner ,_1; for (A•ti) _ ^

inf-fn	 .isional and its physical realization
is impossible. Approximate linear filters were
subsequently derived for ANN(4,5] under the
assumption that the additive ari multiplication
disturbance terms are :unctions of two independ-
ent random processes; hence these results are not
immediately applicable to system identification.
Thus, a new on-line minimum variance til l er for
the identification of systems with additive and
multiplicative anise has been developed which
embodies both accuracy and computational effici-
ency. The resulting filter is shown to utilize
both the covariance of the parameter vector
'itself and the covariance of the error in identi-
fication. A bias reduction scheme can be used if
desired, to yield asymptotically unbiased esti-
nates.

As common in deriving any estimation
scheme, proof of the convergence of the identifi-
cation filter is an integral part of the -valida-
tion of the results. :a this respect, the pro-
posed identification scheme is shown to be con-
vergent in the mean square sense. The proof con-
sists of deriving a suitable upper-bound for the
mean square error 0A.SE) and shoving that the MSE
converges to zero as time tends to infinity. The
mean square convergence of the filter implies con-
vergence with probability which, in turn, would
imply that the estimates are consistent. Using
the proposed parameter identification filter and
the related convergence	 a state-parameter
estimation scheme _s constructed and proven to be
stable in the sense of boundness. The resulting
state-parameter scheme is shown to be comuuta-
tionally feasible and amenable for on-line system
Identification and adaptive control applications.

To illustr3te the reliability cf the identi-
f!cation schemes and the problems encountered,
experimental results for s'_culated linearized
lateral aircraft motion in a iigital c'_csed loop
mode, are included. A c-mparison of the extended
Kalman filter and the minimum variance filter in
the adaptive -ode are presented.
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2. ?roblm Definition

The problem of determining on-line values of
certain parameters appearing in the discrete equa-
tions of a linear constant coefficient process,
which are best with regard to use in &captive
control logic, given the input and noisy measure-
ments of the output, was considered using an
on-line minimum variance filter. The correspond-
ing equations are:

x(k+1)- A x(k) + B u(k)	 (1)

y(k) = x(k) + n(k)	 (2)

where

x(k) = plant state at the k `h sample instant
(n x 1)

A	 - state transition matrix for the dis-
crete system (n x n)

u(k) = control vector (m x 1)
3	 - control distribution matrix (n x m)
y(k) - measurement -rector (k x l) at the kth

instant
J(k) - measurement noise at the kth instant

ccvariance matrix 3(i,j) = a2

where 6 ; , =1, i=t,5.,= 0 otherwise.
1

3. Parameter Modeling

To estimate any unknown vector of parameters
q appearing in the state transition matrix A and
in the control distribution matrix B, it is nec-
essa.r to model the dynamics and obserrationa of
the system parameters. 'rlirthermore, since not all
parameters appearing in the matrices A and B are
to be .dentified, the differentiation between the
set of parameters that are to be identified and
the set of parameters not to be identified is
generally reco=endea. In particular, a conven-
ient representation of the system is:

x(k+l; - C(k) q(k) + D(k) S	 (3)

where

C and D arm selection matrices zontaining
values of the system state and control at the

k `n instant. A zero en, :— for a particular
C i,(or D iV ) would indicate that no coupling

exists between x i and q (or between x ; and

q is s rector of unknown parameters appear-
ing in the A and 3 matrices.
S is a vector of known parameters appearing
in the A and 3 matri_es.

The model for the constant deterministic or 3toch-
astic parameter -rector q is then given by:

='ems Dynamics

qtk+ii-q(k',_(q(0))-q0

P 32E(( q (0)-g0 )( q(0)-q 0 ) T 1	 (4)

Observation

xlk+l) - C(k) q(k) + D(k) S	 (5)

The identification problem as defined in ( 4 ) and
(5) appears to be a conventional linear state
estimation problem. However, because x is not
known exactly, C and D are also unknown, and the
rules and usage of the conventional Kalman filter
cannot be applied. Substituting equation (2)
into (5) gives:

y(k+l)-n(k+l)-C(Y(k)-n(k).u(k))q(k)

+ D(y(k)-n(k),u(k)) S	 (6a)

where

the notation C(y(k)-n(k), u(k)) and
D(y(k)-n(k),u(k)) stresses the fact that
the selection matrices	 and D are functions
of the state and control values. Noting
t hat :

C(y(k)-n(k),u(k))=C(y(k),u(k))-C(n(k),u(k))

and similarly for D, equation 6a can be
revritten as:

y(k+l)-D(Y(k),u(k))S-C(Y(k),u(k))q(k)

-C(n(k),u(k))q(k)-D(n(k),u(k)iS+n(k+1) (6b)

Defining

z(k) - y(k+l) - D(y(k), u(k)) S

to be a pseudo-measurement vector for the 'linear
system given in ;4) and rearranging e quation (7)
gives the parameter model:

q(k+l) - q(k)	 (7)

z(k)-C(k)q(k)-Cn(k)q(k)

+n(k+l)-D^(k)S	 (8)

where

C(k) = C(y(k), u(k))

CI W = C(n(k), u(k))

Dri W 	 D(n(k), u(k))

Equations (7) and (8) denote s linear time in-
•rariant system with a transition matrix I and
obse nation matrix C(k). The observation is
.,or:-:pted by the multiplicative noise term C (k)
and he additive noise terms n(k)-Dn WS	 n

with covariance Roq=R+E (D n3 S'	DnT}

4. Minimum 7ariance Estimation

^.1 Development

Because of divergence and/or inaccuracies
common to most existing identification schemes,
it was desirable to ievelop an alternate scheme
that could hcpef+.lily :eat with these przblems.
The proposed filter is based on a minimum •rar-
iance perfo:man:e 'index for the state estimation
of a linear system with additive and multiplica-
tive n213e.
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The optimum minimum variance filter for a
continuous system is in fact nonlinear [3), and
its exact implementation is virtually impossible.
A linear optimal filter was therefore of interest.
Thus defining the identification algorithm to be

q(k)=q(k-i)*K(k)[z(k)-C(k-1)q(k-1))	 (9)

K is to be determined so as to minimize:

i =	 Ey(gi(k) - q,(k)) 2	(10)
i

which is the trace of the covariance matrix

P(k)-Ey{(q(k)-Q(k))(q(k)-0.(k))T} 	 (11)

where Ey(a(k))-E(-Iy(0) ... .y(k)I

The parameter t (which will be discussed in the
next section) defines the frequency of identifica-
tion. Define the parameter error as j(k)=j(k)
-qlk), with initial conditions at T=0

E(0.(0))-0 ; E(0.(0) UO ) T ) =PO

Using (7), (8) and (9) the error 4 propagates as:

0.('s)=4(k-Z)+K(k)l-C(k-1)4(k-C

-Cn(k-1)q('0 -Dn(k)S+n(k)) 	 (12)

By post multiplying 12 by its trans pose, and tak-
ing the conditional expectation over the entire
measurement vector his-ory (y(0) .... y(k)) and
noting that:

E(Cn(k-1)q(k)4T(k-Z)IyO,...y(k))=0

when Z > 1, the difference equation for the condi-
tional variance P(k) becomes:

?(k)=?(k-Z)-K('s)C(k-1)P(k-Z)-?T(k-1)CT(k-1)KT(k)

+K(k)(8(k-i)P(k-Z)CT(k-1)+w(k-1)+ReQ)KT(k) (13a)

where
	T 	 T

Wk-i
=E(Cn (k-1)q(k-i)q'(k-Z)Cn(k-1)} 	 (13b)

Stationary conditions for the minimization of the
trace of ?(k) are obtained by setting all deriva-
tives of (12) with respect to the elements of K(k)
equal to zero. This yields:

K(k)=P(k-Z)CT(k-1)(C(k-1)?(k-Z)CT(k-1)

+w(k- i) +R
eq

) 1	 (14)

4.2 Observations

(1) The gain of the resulting filter is 3
function of the error covariance ? and
I he weighted noise covariance j(13b);
where the weighting matrix for w is the
covariance of the identified parameter q.

(2) 'he ierivation of the proposed minimum
variance filter is made possibly by not
identifying every i._ , Z > :.
Fcr i - 1, the expected value if many
_rcas terms involving the parameter q,

the error 3 and the noise selection
matrix C  will not van`.sh; this can be

illustrated by noting that:

E{Cn(k-1)q(k)gl(k-1)IYO, ... y(k)} 0 0	 (15)

5. Bias Reduction

Although the linear minimum varir ce filter
as described by equations (9), (14) and (15) was
observed to be relatively accurate with respect
to other linear schemes, a substantial biE iid
appear in the parameter estimates, especially in
the estimates of insensitive parameters (2). An
investigation was therefore conducted to determine
the causes and the means to reduce or eliminate
the bias.

By combining equations (15 and (14), the gain
can be rewritten as:

K(k)-P(k)CT (k-1)R -1 (k-1)	 (16a)
to

where

R =R	 + w	 (16b)
w eq	 k-1

By substituting (16) in (9) and taking the ex pec-
tation and the limit as K - W , it is found -hat*

E{g(k)}=!E{CT(k-l)R-1 C(k-1)}+E{Cn(k-1)RWl

(k-101_1 . [E(8T(k-1)RW1C(k-1)})- q(k)(li)

Obviously equation (17) reveals the bias in -he
estimates of q, q. Assuming that the term

n{Cn(k-1)R_ 18(k-1)) is a generalized measure of
m	 I

the signal power, and E{Cn(k-1)RW CAk-1) is a

generalized measure of the noise, equation (17)
can be written as:

E{q(k)} = [; + `1 )
-1 

(S)	 q(k)	 (18)

where

3 = '{CT(k-1)R-1 C(k-19
^	 W

:I	 {Cn(k-1)Rwl Cn(k-1)}

By examining equation. (17) and (18), it be-
ccmes obvious -hat the troublesome term is -he
noise cover N. Hence a correction term must be
ad?ed so as to compensate for the bias. From
consideratior or ^uations (16) and (17), it is
clear that the correction term must incorporate
the covariance term ?k and the latest estimate

qk-i' Adding the correction term to (14), the

basic algorithm becomes:

q(k)-{I+P(k) ,(k)}q(k-Z)

+ K(k) (z(k)-C(k-l) q(k-il l,	 (19)

-where G(k) is to be found such 'hat

lim E{q(k)} -q	 (20)
;»m

^1.



Taking the expectation for (19) and using (20),
yields:

0(k) nE(C^(k-1)R-1, (k-1)}-N
rl

Hence, the modified minimum variance filter is
given by:

q(k)-(I+P(k)E(Cn(k-1)R_l Cn(k-1)})q(k-R.)

+ K(k)[z(k)-C(k-1)q(k-^Z))	 (21)

where P(k) and K(k) are given by the recursive equ
equations (14) and (15). _t should be pointed out
that in recursive on-line parameter identification
schemes, only asymptotic unbiasness is possible(6)

6. Filter Stability

Essential to any estimation scheme is the
validity of the resulting estimates. in this
respect, it is desired to prove that the proposed
identification algorithm converges to the actual
system parameters. The convergence of the filter
is of particular importance since the resulting
estimates are to be used in the constru.:tion of
an adaptive controller. Before proceeding in
establishing the convergence of the proposed iden-
tification scheme, the following assumptions needed
for the proof are stated:

Al. [n , is a -rector sequ-nce whose entries
&A zero mean independent_ variables. All
entries of the measurement noise vector
(r1.) are mutually independent. Second
and fourth moments of [nki are uniformly
bounded.

A2. 'he deterministic control vector u(k) is
assumed to be bounded. Similarly the out-
put vector y(k) and all transformations on
y(k) are assumed to have bounded moments.

A3. The :'_near system is completely
able andand ccompletely observable.

A4. _he parameter set	 be identified is
assumed *,. be completely observable [?)
in	 sense that the information matrix

(k,l)	 CT(i)R-1C(i)
i=1

is positive definite.

A5. The product of the matrix P and the si-
nal power S is positive definite.

6.1 Parameter Filter .onverBence

Theorem _	 }lean 3o,iare _'onver,e^ _	 Under ..._

assumptions Al to A5, the linear estimator t,
q(k) given in equations 14, 15 and 21 converges
in the nean square sense to the 'lnknown parameter

•rector q of the __near system in (1-2).

Proof: The estimation error q can be given by the
following equation:

q (k) n (I+P N-P8T (1-1)R -1 C(k-1))q(k^)

+P[8T(k-1)RW1C(k-1)q-Nq

-CT(k-1)R-1C(k- 1 ) q-CT (k-1)RWl ( r1-pnS)] 	 (22)

Premultiplying (22) by q(k), taking the expecta-
tion and by repeated use of the Cauchy-Shvartz and
triangle inequalities, an upper bound for the
mean square of the identification error can be
established. [8) By applying Venter's Theorem (9j
and using the fact that in the limit, the maximum
eigenvalue of P behaves as 1 , the mean square

error E(jjq(k)jj z ) is shown kto converge to zero
in the limit, i.e.,

Rim E(IIq(k)II 2 1 = 0
ktm

Combining the fact that the pro posed identifics-
tion scheme is asymptotically unbiased and mean
square convergent, it is concluded that the .filter
is Wean-square consistent.

6.2 Convergence of State Estimation

The maximum likelihood, minimum variance and
least squares estimate of the :_.ate vector x(k)
given the measurement vector y(0)....y(k) is
given by the Kalman-Bucy filter• 	 The Kalman

filter uas shown to converge in the mean square
sense and with probability 1 if the plant model
and Gaussian noise statistics are exactly known.
In cases .+here the plant model is not exactly
known, an approximate Kalman filter can be con-
structed using identified parameters. The stabil-
ity of the approximate Kalman filter is discussed

in the seauel.

Theorem 2: :riven the approximate Kalman filter

x(k/k) =A x(k-1/k-1)+B u(k-1)

+K (k)(y(k)-(A x(k-1/k-!A u(k-1)1)

Ks(k)=Ps(k)R_l	 (23)

where	 x(k/k)A state estimate :sing identified
parameters

A , 3 identified system and input
matrix

K^	 Ps gain and covariance matrix using
identified parameters,

xf the linear system (1,2) is stable and if A and
3 ire consistent estimates of A and 3 respectively,
then

^Lm 1 7]x(klk)-x(klk)Iu0 with probability one
T^ a
Ps (k) • P° as k - - with probability one

Ks (k) • KS as k • m with prcbability one

P.PPRODU(IUUTY 010 THE
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iwhere

x(klk)A optimal state estimate

Ko ?o -optimal gain and covariance matrix
s	 s

The proof of theorem 2 is provided in reference

(a ).

It was shown in section 6.1 that the esti-
mator q in (21) is mean square convergent and mean
square consistent. By invoking theorem 2 and the
stability condition on the plant in 1, it can be
observed that the proposed identifier and the
respective approximate Kalman filter constitute a
stable (in the sense of boundedness) state-
parameter identification scheme. This structure
can serve as an alternative to the linearized
Kalman filter with the advantages of stability and
ease of implementation. Simulations for the state
parameter filter are presented in section S.

T. identification of Time Varying Parameters

.odeiing time varying parameters as a first
order random walk, the minimum variance filter can
be modified or rederived so as to track the varia-

tions in the system parametilr gLkl. The new aura-
meter model is then given by the following equa-
tion:

P aramet e r ?yodel

q(k) - q(k-E) + v(k-2) 	 (24)

where v is a zero mean uncorrelated stationary
Gaussian noise sequence with covariance

K(k) _ Efv(k) v(k) }.

Since the parameter vector a is modeled	 a
first order random walk, its covariance has to be
ipdated recursively so as to compute w(k-i).
Assuming that the initial parameter covariance T

Is given by:

T(0) = E(q(0) qT(0)};

he parameter covariance T(k) and the weighted
noise covariance are given by (a]:

T(k) = T(k-4) + 4(k-t)	 (25)

w(k-1)=E(Cn (k-I)T(k-l)CT (k- 1C)	 (26)

Equations (25) , (26) s-=arize the minimum var-
iance filter for identification of varying para-
meters. The resulting filter is relatively
simple for use in a typical process control
computer.

3. .applications and Resuas

The performance of the minimum variance fil-
er was evaluated experimentally using an adap-
tive controller designed for the linearized
lateral motion of a typical fighter aircraft(10)•

In particular feedf^rvard gains were updated
by direct formula eva_.aticn, while a Riccati
type iterative procedure vas a ed to update the
feedback gains.

For evaluation purposes, the aircraft was
assumed to be flying in a fixed flight condition
(FC2, Mach 0.9, 3000 m). A sensitivity study de-
fined, for identification, a set of 12 parameters
which make up the first and third rows of A and 3
matrices. Parameter estimates were obtained
every other sam le A=2) 

us 
i	 noisy measurements

of the states ,2jand used every 1 sec. in the
gain adaptation procedure. The resulting para-
meters and gains were then used to estimate the
states and controls each sample period of 0.2 sec.
The mare wave aileron pilot, input um of 5° at

the frequency of 0.4 Hz was used in all the
experiments.

The convergence properties, adaptive con-
troller results and comparisons with different
identification procedures to be presented in this
paper were 311 conducted for FC2 and all para-
meter estimates were initialized at 50% of their
actual values.

Figures 1.a,b, and 	 illustrate the behavior
using the minimum variance filter. The asymptotic
unbiasness is evident is figures 1.a and c which
show that the estimates have converged within
20 sec. (50 measurements). The parameter a,3

featured in figure l.b is very insensiti-.e espec-
ially with aileron excitation (the parameter a,3
couples the siieslip angle to the roll rate).

Figure 2 depicts the roll rate behavior in
the adaptive mode. It can be seen that model
following performance is highly correlated with
convergence of the parameter estimates. Reason-
able model following was achieved alter 15 sec.
when most parameters had converged to the actual
values. Comparative results using the ELF are
shown. in Fig. 3.

9. Discussions and Conclusions

A linear minimum variance parameter identifi-
er was derived and was shown experimentally to
converge to the actual parameters. A bias reduc-
tion scheme and modifications for time varying
parameters were :resented. The new filter proved

su perior over existing linear and 'linearized para-
meter filters and generally more flexible and
effective in the estimation of insensitive para-
meters.
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