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ANALYSIS AND APPLICATION OF MINIMUM VARIANCE DISCRETE J&ME
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Abstrac*

An on-line minimum variance parameter identi-
fier is developed which embodies both accuracy
and computaticnal efficiency. The formulation re-
sults in a linear estimation problem with both
additive and multiplicative noise. The resulting
filter which utilizes both the covariance of the
parameter vector itself and the covariance of the
error in identification is proven to be mean
square convergent and mean square consistent. The
MV parameter identification scheme is then used to
construct a stable stete and parameter estimation
algorithm.

1. Introduction

In designing adaptive control systems, it is
necessary to determine whether to implemen<t an
explicit system in which on-line parameter identi-
fier is needed or an implicit system which
does not require explicit parameter identification.
Recent studies have indicated preference for ev-
plicit designs whenever the process to be con-
trolled has non-minimum phase characteristics
and/or high gain and large bandwidth limita-
tions. [1,2]

The development of such an adaptive control
system requires the use of an identification
scheme that is capable of supplying parameter
estimates at an accuracy and rate specified by the
controller characteristics. Because a digital
adaptive controller uses elements of the discret-
ized matrices, identification of these elements
and not the continuous physical system parametars
should be considered. FMurthermore, identification
of the parameters of a continuous system (e.g.,
stability derivatives) from discrete data results
in a problem with many severe nonlinearities.

Linear system identification using the input
and noisy measurements of the ocutput can be
generally cast as a state estimaticn problem with
both additive and multiplicsticn noise (AMN).
These terms will in fact be functions of the same
noise sequence. The continucus optimal nonlinear
filter as derived by Xushner(3] for (AMN) is

H. Xaufman
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infimd onal and its physical realization
is impossible. Approximate linear filters were
subsequently derived for AMN(L4,5] under the
assumption that the additive ari multiplication
disturbance terms are functions of two independ-
ent random processes; hence these results are not
immediately applicable to system identificaticn.
Thus, a nevw on-line minimum variance 1il*er for
the identification of systems with additive and
multiplicative noise has been developed which
embodies both accuracy and computational effici-
ency. The resulting filter is shown to utilize
both the covariance of the parameter vector
itself and the covariance of the error in identi-
fication. A bias reduction scheme can be used if
desired, to yield asymptotically unbiased esti-
nates.

As common in deriving any estimation
scheme, proof of the convergence of the identifi-
caticn filter is an integral part of the valida-
tion of the results. In this respect, the pro-
posed identification scheme is shown to be con-
vergent in the mean square sense. TLe proof con-
sists of deriving a suitable upper-bound for the
mean square error (MSE) and showing that the MSE
converges to zero as time tends to infinity. The
mean square convergence of the filter implies con-
vergence with probability which, in turn, would
imply that the estimates are consistent. Using
the proposed parameter identification filter and
the related convergence proofs, a state-parameter
estimation scheme is constructed and proven to be
stable in the sense of boundness. The resulting
state-parameter scheme is shown to be computa-
tionally feasible and amensble for on-line system
identification and adaptive control applicatiocns.

To illustrate the reliability of the identi-
fication schemes and the problems encountered,
experimental results for simulated linearized
lateral aircraft motion in a digital closed loop
mode, are included. A cnmparison of the extended
Kalman filter and the minimum variance filter in
the adaptive mode are presented.

* This work was supported by NASA Gran
Hampton, VA.
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2. Problem Definition

The problem of determiring on-line values of
certain parameters appearing in the discrete equa-
tions of a linear constaat coefficient process,
vhich are best with regard to use in sdaptive
control logic, given the input and noisy measure-
ments of the output, was considered using an
on-line minimum variance filter. The correspond-
ing equations are:

x(k+l)= A x(k) + B u(k) (1)
y(k) = x(x) + n(k) (2)
vhere
x(k) = plant state at the K sample instant
(nx 1)

A = state transition matrix for the dis-
crete system (n x n)
u(k) = control vector (m x 1)

3 = control distribution matrix (n x m)
y(k) = measurement vector (2 x 1) at the k
instant th
n(k) = measurement noise at the k _instant

covariance matrix R(i,J) = 613'

Jtl. 1'3'51.1' 0 otherwise.

th

where 61

3. Parameter Modeling

To estimate any unknown vector of parameters
q appearing in the state transition matrix A and
in the control distribution matrix B, it is nec-
essary to model the dynamics and observations of
the system parameters. Furthermore, since not all
parameters appearing in the matrices A and B are
to be identified, the differentiation between the
set of parameters that are to be identified and
the set of parameters not to be identified is
generally recommended. In particular, a2 conven=-
ient representation of the system is:

x(k+1) = C(k) qlk) + D(k) S (3)
where

C and D are selection matrices containing
values of the system state and control at the

k*® instant. A zero entry for a particular

Ci‘j(or DiJ) would indicate that no coupling

axists between X, and qJ (or between x; and
8, )

o
g is a vector of unknown parameters appear-
ing in the A and B matrices.

S is a vector of known parameters appearing
in the A and B matrices.

The model for the constant deterministic or stoch-
astic parameter vector g is then given by:

Systems Dynamics
a(k+l)=q(k),2(q(0) )-q,)
?Oss[i;(o)-qo)(q(o)-qo)‘l (L)

Qbservation

x(k+l) = C(k) q(k) + D(k) S (

wn

The identification protlem as defined in (L) and
(5) appears to be a conventional linear state
estimation problem. However, because x is not
known exactly, C and D are also unknown, and the
rules and usage of the conventional Kalman filter
cannot be applied. Substituting equation (2)
into (5) gives:

y(k+1)-n(k+1)=C(y(x)-n(k),u(k))q(k)
+ D(y(k)-n(k),u(k)) s (6a)
where

the notation C(y(k)-n(k), u(k)) and
D(y(k)-n(k),u(k)) stresses the fact that
the selection matrices C and D are functions
of the state and control values. Noting
that:

Cly(k)-n(k) ,u(k))=C(y(x),u(k))-C(n(k),u(x))

and similarly for D, equation 6a can be
rewritten as:

y(k+1)-D(y (k) ,u(k))s=C(y(x) ,u(k))q(k)
=C(n(k),u(k))q(k)=D(n(k),u(k)S+n(k+1) (6b)
Defining
z(k) = y(k+1) - D(y(k), u(k)) s
to be a pseudo-messurement vector for the linear

system given in (4) and rearrenging equation (7)
gives the parameter model:

q(k+1l) = q(k) (1)
2(k)=C(k)q(k)-C (k)q(k)
*n(k*l)-Dn(k)S (8)
where

Clk) = Cly(x), u(k))
Cn(k) = C(n(k), u(k))
Dn(k) = D(n(k), u(k))

Equations (7) and (8) denote a linear time in-
variant system with a transition matrix I and
observation matrix C(k). The observation is
corrupted by the multiplicative noise term C_(k)
and the additive noise terms n(k)-Dn(kls

-~ -

with covariance R__=R+E {D_3 3~ D_"}
eq n n

4, Minimum Variance Estimation

L.1 Development

Because of divergence and/or inaccuracies
common to most existing identification schemes,
it was desirable to develop 2n alternate scheme
that could hopefully deal with these problems.
The proposed filter is based on a minimum var-
iance performan:e index for the state estimation
of a linear system with additive and multiplica-
tive noise.

n
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The optimum minimum variance filter for a
continuous system is in fact nonlinear [3], and
its exact implementation is virtually impossible.
A linear optimal filter was therefore of interest.
Thus defining the identification algorithm to be

a(k)=q(k-2)+K(k)[2(k)-C(k-1)q(k-L)] (9)
K is to be determined so as to minimize:
A 2
J= g Ey(qi(k) - q,(k)) (10)
which is the trace of the covariance matrix
p(x)-!:y{(q(k)-fi(k))(q(k)-&(k))‘r} (11)

where Ey(a(k) )=E[e|y(0),...¥y(k)]

The parameter % (which will be discussed in the
next section) defines the frequency of identifica-
tion. Define the parameter error as 3(k)=3(k)
-q(k), with initial conditions at T=0

£(3(0))=0 ; B(3(0) (0)T} =,
Using (7), (8) and (9) the error § propagates as:

3(x)=3(k-2)+K (i) [-C(k-1)3(k-1)
-cn(k-l)q(z)-nn(k)s+n(k)] (12)
By post multiplying 12 by its transpose, and tak-

ing the conditicnal expectation over the entire
measurement vector history (y(0),...y(k)) and

.noting that:

s[cn(k-l)q(k)&T(k-z)Iyo....y(k)]=o

when L > 1, the difference equation for the condi-
tional variance P(k) becomes:

2(k)=P{k-2)K (k)& (k-1)P(k-2)-PT (k-2 )ET (k-1)K" (k)

+K(k)(e(k-l)P(k-l)eT(k-l)Ow(k-l)*Req)KT(k) (13a)
where

;4 T
(k- & - -
w1 =E{C (k-1)q(k-2)q" (k-2)C (x-1)} (13b)
Stationary conditions for the minimization of the
trace of P(k) are obtained by setting all deriva-
tives of (12) with respect to the elements of K(k)
equal to zero. This yields:

A

K(k)=P(k=2)ET (k=1) (€ (k=1)P(k~2)E" (k=1)

su(k-1)+8__ "t (14)

+R
eq

-
n

Observations

(1) The gain of the resulting filter is a
function of the error covariance P and
the weighted noise covariance w(13b);
where the weighting matrix for w is the
covariance of the identified parameter g.

(2) The derivation of the proposed minimum
variance filter is made possibly by not
identifying every sample; i.e., 2 > 1.
For L = 1, the expected value of many
cross terms involving the parameter g,

the error § and the noise selection
matrix cn will not van’sh; this can be

illustrated by noting that:

B(C, (k-1)3(k)q" (k1) [y, .. (K)} # 0 (15)
5. Bias Reduction

Although the linear minimum varirace filter
as described by equations (9), (1k) and (15) was
observed to be relatively accurate with respect
to other linear schemes, a substantial bie : did
appear in the parameter estimates, especially in
the estimates of insensitive parameters [2]. An
investigation was therefore conducted to determine
the causes and the means to reduce or eliminate
the bias.

By combining equations (15 and (14), the gain
can be rewritten as:

K(k)=p(k)cT (k-1)R " (x-1) (26a)
where
Ry=R . * o, (160)

By substituting (16) in (9) and taking the expec-
tation and the limit as K + @, it is found that-

~ P - ~ m -
2(q00) ={E(E (e-1)R]Y Ek-1) BemlC] (-1)R]

cn(k-l)}]’1 * [E(ET(k-l)R;IE(k-l)}]' q(k)(17)
Obviously equation (17) reveals the bias in the
estimates of q, q. Assuming that the tem
E{e:(k-l)R;IE(k-l)} is a generalized measure of
the signal power, and Efcg(k—l)k;lcék-l) is a
generalized measure of the noise, equation (17)
can be written as:

E{d0)}=(g + 3170 8] - alk) (18)
where

§ = B(cT(k-1)R]" Clk-1)}

L= s{c:(x-1)3;1 ¢, (k=1)}

By examining equation (17) and (18), it be=-
comes obvious that the troublesome term is the
noise power N. Hence a correction term must be
adéed s0o as to compensate for the bias. From
consideratior ot -7uations (16) and (17), it is
clear that the correction term must incorporate

the covariance temm ?k and the latest estimate
ak-l' Adding the correction term to (14), the

basic algorithm becomes:

a(k)={1+p(x) 3(x)}q(k-2)

+ K(k) [2(k)=C(k-1) q(k-L)] 19)
where G(k) is to be found such %that
1in E2{q(k)} =q (20)

ke



Taking the expectation for (19) and using (20),
yields:

= T -1 - =)
G(k) :{c"(k-z.)rtm Cn(k 1)}=N

Hence, the modified minimum variance filter is
given by:

4k)=(1+P(0)B(C] (k-LIR]" € (k-1)Dd(k-2)
+ K(k)[2(k)Clx-1)q(k-2)] (21)

where P(k) and K(k) are given by the recursive equ
equations (14) and (15). It should be pointed out
that in recursive on-!ine parameter identification
schemes, only asymptotic unbiasness is possible(6].

6. Filter Stability

Essential to any estimation scheme is the
validity of the resulting estimates. In this
respect, it is desired to prove that the proposed
identification algorithm converges to the actual
system parameters. The convergence of the filter
is of particular importance since the resulting
estimates are to be used in the construction of
an adaptive controller. Before proceeding in
establishing the convergence of the proposed iden=-
tification scheme, the following assumptions needed
for the proof are stated:

Al. [n,] is a vector sequence whose entries
u-g zero mean independent variables. All
entries of the measurement noise vector
(n,) are mutually independent. Second
and fourth moments of [nk] are uniformly
bounded.

A2. The deterministic control vector u(k) is
assumed to be bounded. Similarly the out-
put vector y(k) and all transformations on
y(k) are assumed to have bounded moments.

A3, The linear system is completely control-
able and completely observable.

AL, The parameter set to be identified is
assumed to be completely observable (7]
in the sense that the information matrix

£ A -l”
£ k0 a1 Ersien)
= 0
i=1
is positive definite.

AS5. The product of the matrix P and the sig-

nal power S is positive definite.

6.1 Parameter Filter Convergence

Theorem 1. Mean Square Convergence. Under the
assumptions Al to A5, the linear estimator of
q(k) given in equations 14, 15 and 21 converges
in the mean square sense to the unknown parameter
vector q of the linear system in (1-2).

Proof: The estimation error 3 can be given by the
following equation:

d(k)=(1+P u-pc“"(l-z)nujl (k-1)13(k-p)
+P[8T (k-1 )R‘:le(k-l )a-Nq

8% (21 )R18 (k1 )a AT -1
C* (K 1)11m C(k-1)q=C (k-l)Ru (n-nns)] »(22)

Premultiplying (22) by 3(k), taking the expecta-
tion and by repeated use of the Cauchy-Shwartz and
triangle in:qualities, an upper bound for the
mean square of the identification error can be
established. [8] By applying Venter's Theorem (9]
and using the fact that in the limit, the maximum
eigenvalue of P behaves as 1 , the mean square

error E[||q(k)||?] is shown®to converge to zero

in the limit, i.e.,

2im 2(]]3(x)[]2] = 0
o

Combining the fact that the proposed identifica-
tion scheme is asymptotically unbiased and mean
square convergent, it is concluded that the filter
is mean-square consistent.

6.2 Convergence of State Estimation

The maximum likelihood, minimum variance and
least squares estimate of the state vector x(k)
given the measurement vector y(0)....y(k) is
given by the Kalman-Bucy filter. The Kalman
filter was shown to converge in the mean square
sense and with probability 1 if the plant model
and Gaussian noise statistics are exactly known.
In cases <here the plant model is not exactly
known, an approximate XKalman filter can be con-
structed using identified parameters. The stabil-
ity of the approximate Kalman filter is discussed
in the sequel.

Theorem 2: Given the approximate Kalman filter
x(k/k)=A X(k-1/k-1)+B u(k-1)

¢ﬁs(k)[y(k)-[3 x(k-1/k-1)+8 u(k-1)]]
1

:(s(k)ﬂPs(k)Rk (23)
where E(k/k)_A_ state estimate using identified
parameters
R y § identified system and input
matrix

Ks ¥ Ps gain and covariance matrix using
identified parameters,

£ the linear system (1,2) is stable and if A and
B are consistent estimates of A and B respectively,
then 4

) R S A ts
Lim = J|x(k|k)-x(k|k)|=0 with probability one
- ey

¢

(k) - ?‘; as k = » with probability one

e b

3

K (k) - "'; as k + @ with probability one
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vwhere

x(k|k)4 optimal state estimate

l:: s P: =optimal gain and covariance matrix

The proof of theorem 2 is provided in reference
(8).

It wvas shown in section 6.1 that the esti-
mator q in (21) is mean square convergent and mean
square consistent. By invoking theorem 2 and the
stability condition on the plant in 1, it can be
observed that the proposed identifier and the
respective approximate Kalman filter constitute a
stable (in the sense of boundedness) state-
parameter identification scheme. This structure
can serve as an alternative to the linearized
Kalman filter with the advantages of stability and
ease of implementation. Simulations for the state
parameter filter are presented in section 8.

T. Identification of Time Varying Parameters

Modeling time varying parameters as a first
order random walk, the minimum variance filter can

be modified or rederived so as to track the varia- _
_tions in the system parameter q(k). The new para=_

meter model is then given by the following equa-
tion:

Parameter Model
q(kx) = q(k=-2) + v(k-2) (24)

where v is a zero mean uncorrelated stationary
Gaussian noise seq%ence with covariance
Qk) = E{v(x) v(k)*}

Since the parameter vector g is modeled =< a
first order random walk, its covariance has to be
updated recursively so as to compute w(k=1).
Assuming that the initial parameter covariance T

is given by:
7(0) = E(q(0) q*(0)};

the parameter covariance T(k) and the weighted
noise covariance are given by (8]:

(k) = T(k-2) + Q(k-L) (25)
w(k-l)-z(cn(k-1>r<k-z)c§<x-z) (26)

Equations (25) , (26) summarize the minimum var-
iance filter for identification of varying para-
meters. The resulting filter is relatively
simple for use in a typical process control
computer.

8. Applications and Results

The performance of the minimum variance fil=-
ter was evaluated experimentally using an adap-
tive controller designed for the linearized
lateral motion of a typical fighter aircraft(10].

In particular feedforward gains were updated
by direct formula evaluation, while a Riccati
type iterative procedure was used to update the
feedback gains.

For evaluation purposes, the aircraft was
assumed to be flying in a fixed flight condition
(Fc2, Mach 0.9, 3000 m). A sensitivity study de-
fined, for identification, a set of 12 parameters
which make up the first and third rows of A and B8
matrices. Parameter eltmtel were obtained

n_the
gain adaptatiocn Eocedure. The resulting para-
meters and gains were then used to estimate the

states and controls each sample period of 0.2 sec.
The -mare wave aileron pilot input u of 5° at

the frequency of 0.4 Hz was used in all the
experiments.

The convergence properties, adaptive con-
troller results and comparisons with different
identification procedures to be presented in this
paper were all conducted for FC2 and all para-
meter estimates were initialized at 50% of their
actual values.

Figures l.a,b, and ¢ illustrate the behavior
using the minimum variance filter. The asymptotic
unbiasness is evident in figures l.a and ¢ which
show that the estimates have converged within
20 sec. (50 measurements). The parameter ‘l3

featured in figure 1.b is very insensitive espec-
ially with aileron excitation (the parameter 313
couples the sideslip angle to the roll rate).

Figure 2 depicts the roll rate behavior in
the adaptive mode. It can be seen that model
following performance is highly correlated with
convergence of the parameter estimates. Reason=-
able model following was achieved after 15 sec.
when most parameters had converged to the actual
values. Comparative results using the ELF are
shown in Fig. 3.

9. Discussions and Conclusions

A linear minimum variance parameter identifi-
er was derived and was shown experimentally to
converge to the actual parameters. A bias reduc-
tion scheme and modifications for time varying
rarameters were presented. The new filter proved
superior over existing linear and lineerized para-
meter filters and generally more flexible and
effective in the estimation of insensitive para-
meters.
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