27 research outputs found
Imidazo bibyclic imminium compounds as antitumor agents
The invention relates to imidazobicycles having a quaternary nitrogen that are inhibitors of the Hedgehog pathway and therefore useful as antitumor agents and as probes of the function of Hedgehog-dependent systems
Bicyclic imidazolium inhibitors of Gli transcription factor activity
Gli transcription factors within the Hedgehog (Hh) signaling pathway direct key events in mammalian development and promote a number of human cancers. Current therapies for Gli‐driven tumors target Smoothened (SMO), a G protein‐coupled receptor‐like protein that functions upstream in the Hh pathway. Although these drugs can have remarkable clinical efficacy, mutations in SMO and downstream Hh pathway components frequently lead to chemoresistance. In principle, therapies that act at the level of Gli proteins, through direct or indirect mechanisms, would be more efficacious. We therefore conducted a screen of 325,120 compounds for their ability to block the constitutive Gli activity induced by loss of Suppressor of Fused (SUFU), a scaffolding protein that directly inhibits Gli function. Our studies reveal a family of bicyclic imidazolium derivatives that can inhibit Gli‐dependent transcription without affecting the ciliary trafficking or proteolytic processing of these transcription factors. We anticipate that these chemical antagonists will be valuable tools for investigating the mechanisms of Gli regulation and developing new strategies for targeting Gli‐driven cancers
Recommended from our members
Identification of Collateral Sensitivity to Dihydroorotate Dehydrogenase Inhibitors in Plasmodium falciparum
Drug resistance has been reported for every antimalarial in use highlighting the need for new strategies to protect the efficacy of therapeutics in development. We have previously shown that resistance can be suppressed with a population biology trap: by identifying situations where resistance to one compound confers hypersensitivity to another (collateral sensitivity), we can design combination therapies that not only kill the parasite but also guide its evolution away from resistance. We applied this concept to the Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme, a well validated antimalarial target with inhibitors in the development pipeline. Here, we report a high-throughput screen to identify compounds specifically active against PfDHODH resistant mutants. We additionally perform extensive cross-resistance profiling allowing us to identify compound pairs demonstrating the potential for mutually incompatible resistance. These combinations represent promising starting points for exploiting collateral sensitivity to extend the useful lifespan of new antimalarial therapeutics
Advances in Malaria Pharmacology and the online Guide to MALARIA PHARMACOLOGY: IUPHAR Review X
Antimalarial drug discovery has until recently been driven by high-throughput phenotypic cellular screening, allowing millions of compounds to be assayed and delivering clinical drug candidates. In this review, we will focus on target-based approaches, describing recent advances in our understanding of druggable targets in the malaria parasite. Targeting multiple stages of the Plasmodium lifecycle, rather than just the clinically symptomatic asexual blood stage, has become a requirement for new antimalarial medicines, and we link pharmacological data clearly to the parasite stages to which it applies. Finally, we highlight the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY, a web resource developed for the malaria research community that provides open and optimized access to published data on malaria pharmacology
Recommended from our members
Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity.
Cytoplasmic dyneins 1 and 2 are related members of the AAA+ superfamily (ATPases associated with diverse cellular activities) that function as the predominant minus-end-directed microtubule motors in eukaryotic cells. Dynein 1 controls mitotic spindle assembly, organelle movement, axonal transport, and other cytosolic, microtubule-guided processes, whereas dynein 2 mediates retrograde trafficking within motile and primary cilia. Small-molecule inhibitors are important tools for investigating motor protein-dependent mechanisms, and ciliobrevins were recently discovered as the first dynein-specific chemical antagonists. Here, we demonstrate that ciliobrevins directly target the heavy chains of both dynein isoforms and explore the structure-activity landscape of these inhibitors in vitro and in cells. In addition to identifying chemical motifs that are essential for dynein blockade, we have discovered analogs with increased potency and dynein 2 selectivity. These antagonists effectively disrupt Hedgehog signaling, intraflagellar transport, and ciliogenesis, making them useful probes of these and other cytoplasmic dynein 2-dependent cellular processes
Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity
Cytoplasmic dyneins
1 and 2 are related members of the AAA+ superfamily
(ATPases associated with diverse cellular activities) that function
as the predominant minus-end-directed microtubule motors in eukaryotic
cells. Dynein 1 controls mitotic spindle assembly, organelle movement,
axonal transport, and other cytosolic, microtubule-guided processes,
whereas dynein 2 mediates retrograde trafficking within motile and
primary cilia. Small-molecule inhibitors are important tools for investigating
motor protein-dependent mechanisms, and ciliobrevins were recently
discovered as the first dynein-specific chemical antagonists. Here,
we demonstrate that ciliobrevins directly target the heavy chains
of both dynein isoforms and explore the structure–activity
landscape of these inhibitors <i>in vitro</i> and in cells.
In addition to identifying chemical motifs that are essential for
dynein blockade, we have discovered analogs with increased potency
and dynein 2 selectivity. These antagonists effectively disrupt Hedgehog
signaling, intraflagellar transport, and ciliogenesis, making them
useful probes of these and other cytoplasmic dynein 2-dependent cellular
processes