91 research outputs found

    Acetylation of PAMAM dendrimers for cellular delivery of siRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advancement of gene silencing via RNA interference is limited by the lack of effective short interfering RNA (siRNA) delivery vectors. Rational design of polymeric carriers has been complicated by the fact that most chemical modifications affect multiple aspects of the delivery process. In this work, the extent of primary amine acetylation of generation 5 poly(amidoamine) (PAMAM) dendrimers was studied as a modification for the delivery of siRNA to U87 malignant glioma cells.</p> <p>Results</p> <p>PAMAM dendrimers were reacted with acetic anhydride to obtain controlled extents of primary amine acetylation. Acetylated dendrimers were complexed with siRNA, and physical properties of the complexes were studied. Dendrimers with up to 60% of primary amines acetylated formed ~200 nm complexes with siRNA. Increasing amine acetylation resulted in reduced polymer cytotoxicity to U87 cells, as well as enhanced dissociation of dendrimer/siRNA complexes. Acetylation of dendrimers reduced the cellular delivery of siRNA which correlated with a reduction in the buffering capacity of dendrimers upon amine acetylation. Confocal microscopy confirmed that escape from endosomes is a major barrier to siRNA delivery in this system.</p> <p>Conclusion</p> <p>Primary amine acetylation of PAMAM dendrimers reduced their cytotoxicity to U87 cells, and promoted the release of siRNA from dendrimer/siRNA complexes. A modest fraction (approximately 20%) of primary amines of PAMAM can be modified while maintaining the siRNA delivery efficiency of unmodified PAMAM, but higher degrees of amine neutralization reduced the gene silencing efficiency of PAMAM/siRNA delivery vectors.</p

    Nanoscale amphiphilic macromolecules as lipoprotein inhibitors: the role of charge and architecture

    Get PDF
    A series of novel amphiphilic macromolecules composed of alkyl chains as the hydrophobic block and poly(ethylene glycol) as the hydrophilic block were designed to inhibit highly oxidized low density lipoprotein (hoxLDL) uptake by synthesizing macromolecules with negatively charged moieties (ie, carboxylic acids) located in the two different blocks. The macromolecules have molecular weights around 5,500 g/mol, form micelles in aqueous solution with an average size of 20–35 nm, and display critical micelle concentration values as low as 10−7 M. Their charge densities and hydrodynamic size in physiological buffer solutions correlated with the hydrophobic/hydrophilic block location and quantity of the carboxylate groups. Generally, carboxylate groups located in the hydrophobic block destabilize micelle formation more than carboxylate groups in the hydrophilic block. Although all amphiphilic macromolecules inhibited unregulated uptake of hoxLDL by macrophages, inhibition efficiency was influenced by the quantity and location of the negatively charged-carboxylate on the macromolecules. Notably, negative charge is not the sole factor in reducing hoxLDL uptake. The combination of smaller size, micellar stability and charge density is critical for inhibiting hoxLDL uptake by macrophages

    Carbohydrate-derived amphiphilic macromolecules: a biophysical structural characterization and analysis of binding behaviors to model membranes.

    Get PDF
    The design and synthesis of enhanced membrane-intercalating biomaterials for drug delivery or vascular membrane targeting is currently challenged by the lack of screening and prediction tools. The present work demonstrates the generation of a Quantitative Structural Activity Relationship model (QSAR) to make a priori predictions. Amphiphilic macromolecules (AMs) "stealth lipids" built on aldaric and uronic acids frameworks attached to poly(ethylene glycol) (PEG) polymer tails were developed to form self-assembling micelles. In the present study, a defined set of novel AM structures were investigated in terms of their binding to lipid membrane bilayers using Quartz Crystal Microbalance with Dissipation (QCM-D) experiments coupled with computational coarse-grained molecular dynamics (CG MD) and all-atom MD (AA MD) simulations. The CG MD simulations capture the insertion dynamics of the AM lipophilic backbones into the lipid bilayer with the PEGylated tail directed into bulk water. QCM-D measurements with Voigt viscoelastic model analysis enabled the quantitation of the mass gain and rate of interaction between the AM and the lipid bilayer surface. Thus, this study yielded insights about variations in the functional activity of AM materials with minute compositional or stereochemical differences based on membrane binding, which has translational potential for transplanting these materials in vivo. More broadly, it demonstrates an integrated computational-experimental approach, which can offer a promising strategy for the in silico design and screening of therapeutic candidate materials

    Locally Delivered Salicylic Acid From a Poly(anhydride-ester): Impact on Diabetic Bone Regeneration

    Get PDF
    Diabetes mellitus (DM) involves metabolic changes that can impair bone repair, including a prolonged inflammatory response. A salicylic acid-based poly(anhydride-ester) (SA-PAE) provides controlled and sustained release of salicylic acid (SA) that locally resolves inflammation. This study investigates the effect of polymer-controlled SA release on bone regeneration in diabetic rats where enhanced inflammation is expected. Fifty-six Sprague–Dawley rats were randomly assigned to two groups: diabetic group induced by streptozotocin (STZ) injection or normoglycemic controls injected with citrate buffer alone. Three weeks after hyperglycemia development or vehicle injection, 5 mm critical sized defects were created at the rat mandibular angle and treated with SA-PAE/bone graft mixture or bone graft alone. Rats were euthanized 4 and 12 weeks after surgery, then bone fill percentage in the defect region was assessed by micro-computed tomography (CT) and histomorphometry. It was observed that bone fill increased significantly at 4 and 12 weeks in SA-PAE/bone graft-treated diabetic rats compared to diabetic rats receiving bone graft alone. Accelerated bone formation in normoglycemic rats caused by SA-PAE/bone graft treatment was observed at 4 weeks but not at 12 weeks. This study shows that treatment with SA-PAE enhances bone regeneration in diabetic rats and accelerates bone regeneration in normoglycemic animals

    Silk: Materials, Processes, and Applications

    No full text

    Novel Polyanhydrides with Enhanced Thermal and Solubility Properties

    No full text
    corecore