249 research outputs found

    Linkage between Accretion Disks and Blazars

    Full text link
    The magnetic field in an accretion disk is estimated assuming that all of the angular momentum within prescribed accretion disk radii is removed by a jet. The magnetic field estimated at the base of the jet is extrapolated to the blazar emission region using a model for a relativistic axisymmetric jet combined with some simplifying assumptions based on the relativistic nature of the flow. The extrapolated magnetic field is compared with estimates based upon the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN 421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self- Compton models are inconsistent with the magnetic fields extrapolated in this way. However, in two cases inverse Compton models in which a substantial part of the soft photon field is generated locally agree well, mainly because these models imply magnetic field strengths which are closer to being consistent with Poynting flux dominated jets. This comparison is based on estimating the mass accretion rate from the jet energy flux. Further comparisons along these lines will be facilitated by independent estimates of the mass accretion rate in blazars and by more detailed models for jet propagation near the black hole.Comment: Submiteed to the Astrophysics & Space Science special issue on the 5th Stromlo Symposiu

    The cyclo-synchrotron process and particle heating through the absorption of photons

    Full text link
    We propose a new approximation for the cyclo-synchrotron emissivity of a single electron. In the second part of this work, we discuss a simple application for our approximation, and investigate the heating of electrons through the self-absorption process. Finally, we investigate the self-absorbed part of the spectrum produced by a power-law population of electrons. In comparison to earlier approximations, our formula provides a few significant advantages. Integration of the emissivity over the whole frequency range, starting from the proper minimal emitting frequency, gives the correct cooling rate for any energy particle. Further, the spectrum of the emission is well approximated over the whole frequency range, even for relatively low particle energies (beta << 0.1), where most of the power is emitted in the first harmonic. In order to test our continuous approximation, we compare it with a recently derived approximation of the first ten harmonics. Finally, our formula connects relatively smooth to the synchrotron emission at beta=0.9. We show that the self-absorption is a very efficient heating mechanism for low energy particles, independent of the shape of the particle distribution responsible for the self-absorbed synchrotron emission. We find that the energy gains for low energy particles are always higher than energy losses by cyclo-synchrotron emission. We show also that the spectral index of the self-absorbed part of the spectrum at very low frequencies differs significantly from the well known standard relation I(nu) ~ nu^(5/2).Comment: 9 pages, 4 figures, accepted for publication in A&

    X-ray variability patterns in blazars

    Full text link
    We study the expected variability patterns of blazars within the two-zone acceleration model putting special emphasis on flare shapes and spectral lags. We solve semi-analytically the kinetic equations which describe the particle evolution in the acceleration and radiation zone. We then perturb the solutions by introducing Lorentzian variations in its key parameters and examine the flaring behavior of the system. We apply the above to the X-ray observations of blazar 1ES 1218+304 which exhibited a hard lag behavior during a flaring episode and discuss possibilities of producing it within the context of our model. The steady-state radio to X-rays emission of 1ES 1218+304 can be reproduced with parameters which lie well within the ones generally accepted from blazar modeling. Additionally, we find that the best way to explain its flaring behavior is by varying the rate of particles injected in the acceleration zone.Comment: accepted by A&

    On the correlation between the X-ray and gamma-ray emission in TeV blazars

    Full text link
    The observations of TeV blazars published recently show an unexpected quadratic or even cubic correlation between the X-ray and gamma-ray emission. A standard model of the synchrotron self-Compton emission of a compact source inside a jet is not able to explain such a correlation. Therefore, we propose an alternative scenario where the emission of at least two independent compact components is observed at the same time. We compare two different models. The first model assumes the injection of relativistic particles into a downstream region of a shock wave inside a jet that creates the emitting source. The model precisely describes the evolution of the particle energy spectrum inside the source and takes into account a light-crossing time effect for the produced radiation. The second model assumes an intrinsically constant emission of a homogeneous source that travels inside the jet along a curved trajectory, where the activity is produced simply by different values of the source's Doppler factor. To verify the two models we use recentlu published observations of Mrk 421. Our simulations show that simultaneous radiation of at least two independent sources, where the first source dominates the emission in the X-ray range and the second source radiates strongly in the gamma-ray range, can explain the observed correlations. However, the injection model provides inadequate results because it gives different values for the correlation of the rise and decay of a flare. This problem is negligible in the scenario that uses the Doppler boosting effect. Therefore, this approach yields much better results.Comment: 6 pages, 2 figures, accepted for publication in A&

    Dissipation of jet bulk kinetic energy in powerful blazars

    Get PDF
    We investigate the dissipation of the bulk kinetic energy of a relativistic jet at different distances from the central power--house and analyse in detail how the dissipated energy is radiated away. We assume that the location of the dissipation region is a function of the bulk Lorentz factor Gamma of the jet, being closer to the center for smaller Gamma. This assumption is naturally fulfilled in the internal shock scenario. The dissipated energy is partially used to accelerate electrons and to amplify the magnetic field. This process creates a source inside the jet (blob). Such blobs may efficiently produce synchrotron and inverse Compton emission. We find that even if the blobs or shells responsible for the blazar activity carry the same energy (in bulk kinetic form), the fact that they move at different Gamma can produce dramatic variations in different bands, even if the bolometric luminosity is instead very similar. This is due to the relative importance of the synchrotron, self-Compton and external Compton radiation processes, which greatly changes by changing Gamma and the compactness of the source, even if the total radiated energy is constant. We then find that the jet can produce most of its radiative output at small distances from the putative black-hole and its accretion disk, if this implies a low level of emitted MeV-GeV flux. Our findings, which we apply for illustrative purposes to the blazar 3C 454.3, will be easily testable by the coming gamma-ray satellite, such as AGILE and GLAST.Comment: accepted for publication in A&

    X-ray Time Lags in TeV Blazars

    Full text link
    We use Monte Carlo/Fokker-Planck simulations to study the X-ray time lags. Our results show that soft lags will be observed as long as the decay of the flare is dominated by radiative cooling, even when acceleration and cooling timescales are similar. Hard lags can be produced in presence of a competitive achromatic particle energy loss mechanism if the acceleration process operates on a timescale such that particles are slowly moved towards higher energy while the flare evolves. In this type of scenario, the {\gamma} -ray/X-ray quadratic relation is also reproduced.Comment: 4 pages, 6 figures, Proceeding of `Multiwavelength Variability of Blazars', Guangzhou, Chin

    Near Infrared Intraday Variability of Mrk 421

    Full text link
    We report results from our monitoring of the BL Lac object Mrk 421 in the near-IR JJ band. The observations, aimed at studying the intraday variability (IDV) of the object, were carried out systematically over an extended (and near-continuous) period of eight nights from the 1.2m Mount Abu Infrared Telescope, India. There are limited studies for Mrk 421 in the JJ band for such an extended period. The observation epoch for this study (25 February - 5 March 2003) was chosen to significantly overlap other concurrent studies of Mrk 421 in the X-ray/γ\gamma-ray regions being conducted using the Rossi X-ray timing explorer (RXTE) and the solar tower atmospheric Cherenkov effect experiment (STACEE). Hence these results could be useful for a multi-wavelength analysis of the variability behavior of Mrk 421. We find that Mrk 421 was quite active during the observed period and showed significant IDV and short term variability. A maximum variation of 0.89 magnitudes is seen over the entirety of the observed period. Flaring activity, with typical brightness variations of 0.4\sim 0.4, are also seen on several occasions. The extent of the variability observed by us is compared with the results of other similar studies of Mrk 421 in the JJ band.Comment: accepted for publication in Astronomy & Astrophysics (6 pages, 2 figures

    Extragalactic jets on subpc and large scales

    Full text link
    Jets can be probed in their innermost regions (d~0.1 pc) through the study of the relativistically-boosted emission of blazars. On the other extreme of spatial scales, the study of structure and dynamics of extragalactic relativistic jets received renewed impulse after the discovery, made by Chandra, of bright X-ray emission from regions at distances larger than hundreds of kpc from the central engine. At both scales it is thus possible to infer some of the basic parameters of the flow (speed, density, magnetic field intensity, power). After a brief review of the available observational evidence, I discuss how the comparison between the physical quantities independently derived at the two scales can be used to shed light on the global dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets - from Planets to Quasars. Accepted, to be published in Astrophysics & Space Scienc

    Searches for very high energy gamma rays from blazars with CANGAROO-III telescope in 2005-2009

    Full text link
    We have searched for very high energy (VHE) gamma rays from four blazars using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C 279, performed from 2005 to 2009, applying a new analysis to suppress the effects of the position dependence of Cherenkov images in the field of view. No significant VHE gamma ray emission was detected from any of the four blazars. The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT archival data. Non-simultaneous wide range (radio to VHE gamma-ray bands) spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV gamma-ray spectra, and archival data are discussed using a one-zone synchrotron self-Compton (SSC) model in combination with a external Compton (EC) radiation. The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model, and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC model. We find a consistency with the blazar sequence in terms of strength of magnetic field and component size.Comment: 11 pages, 8 figures, Accepted for publication in Astroparticle Physic
    corecore