77 research outputs found
ブタ・ラットの遺伝資源保存に関する研究
本研究により, 1) ブタIVP系によって作出した前核期胚は, SSV法による超低温保存が可能で, 産子への発生能を有することが明らかになった。2) ラット凍結融解精子のIVFを介して産子を作出する場合, 凍結融解精子をIBMX処理し, 細胞内cAMP量が上昇させ, タンパク質のチロシンリン酸化を促進させることで, IVF卵の2PN形成率が改善し, 効率的な産子作出が可能となった。The objective of the present study was to develop methods for conservation of genetic resources in pigs and rats. In pigs, a high proportion of porcine zygotes were successfully cryopreserved by solid surface vitrification at the pronuclear stage without delipation. Full developmental competence of these zygotes to the piglet stage was preserved. We also show here for the first time successful IVF using cryopreserved rat spermatozoa. These protocols will be useful for the efficient genetic conservation in pig and rats
Generation of rat offspring derived from sperm cryopreserved/banked in the National BioResource Project for the rat followed by transportation to another institution
To preserve genetic resources efficiently in rats, sperm cryopreservation is essential. This study aimed to confirm the ability of cryopreserved and transported rat spermatozoa to fertilize through intrauterine insemination. The Komeda miniature rat Ishikawa is a mutant caused by the autosomal recessive mutation mri. The epididymal sperm was frozen with egg yolk medium and banked at the National BioResource Project (NBRP), Kyoto University. The sperm was transported to Azabu University, then thawed at 37℃. The thawed semen was inseminated into the uterine horns of recipients; its motility was around 10%. Seven of 15 inseminated female rats became pregnant and 13 live pups were born. The results indicate that rat spermatozoa cryopreserved at NBRP are capable of restoring genetic resources through intrauterine insemination. We also confirmed the usefulness of assisted reproductive technologies for the rat including sperm cryopreservation and intrauterine insemination
Molecular mechanisms of embryonic implantation in mammals: Lessons from the gene manipulation of mice
Abstract Background Human infertility has become a serious and social issue all over the world, especially in developed countries. Numerous types of assisted reproductive technology have been developed and are widely used to treat infertility. However, pregnancy outcomes require further improvement. It is essential to understand the cross‐talk between the uterus (mother) and the embryo (fetus) in pregnancy, which is a very complicated event. Methods The mammalian uterus requires many physiological and morphological changes for pregnancy‐associated events, including implantation, decidualization, placentation, and parturition, to occur. Here is discussed recent advances in the knowledge of the molecular mechanisms underlying these reproductive events — in particular, embryonic implantation and decidualization — based on original and review articles. Main findings (Results) In mice, embryonic implantation and decidualization are regulated by two steroid hormones: estrogen and progesterone. Along with these hormones, cytokines, cell‐cycle regulators, growth factors, and transcription factors have essential roles in implantation and decidualization in mice. Conclusion Recent studies using the gene manipulation of mice have given considerable insight into the molecular mechanisms underlying embryonic implantation and decidualization. However, as most of the findings are based on mice, comparative research using different mammalian species will be useful for a better understanding of the species‐dependent differences that are associated with reproductive events, including embryonic implantation
Genetic profiling of two phenotypically distinct outbred rats derived from a colony of the Zucker fatty rats maintained at Tokyo Medical University
The Zucker fatty (ZF) rat is an outbred rat and a well-known model of obesity without diabetes, harboring a missense mutation (fatty, abbreviated as fa) in the leptin receptor gene (Lepr). Slc:Zucker (Slc:ZF) outbred rats exhibit obesity while Hos:ZFDM-Lepr(fa) (Hos:ZFDM) outbred rats exhibit obesity and type 2 diabetes. Both outbred rats have been derived from an outbred ZF rat colony maintained at Tokyo Medical University. So far, genetic profiles of these outbred rats remain unknown. Here, we applied a simple genotyping method using Ampdirect reagents and FTA cards (Amp-FTA) in combination with simple sequence length polymorphisms (SSLP) markers to determine genetic profiles of Slc:ZF and Hos:ZFDM rats. Among 27 SSLP marker loci, 24 loci (89%) were fixed for specific allele at each locus in Slc:ZF rats and 26 loci (96%) were fixed in Hos:ZFDM rats, respectively. This indicates the low genetic heterogeneity in both colonies of outbred rats. Nine loci (33%) showed different alleles between the two outbred rats, suggesting considerably different genetic profiles between the two outbred rats in spite of the same origin. Additional analysis using 72 SSLP markers further supported these results and clarified the profiles in detail. This study revealed that genetic profiles of the Slc:ZF and Hos:ZFDM outbred rats are different for about 30% of the SSLP marker loci, which is the underlying basis for the phenotypic difference between the two outbred rats
Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain.
In mammals, unfertilized oocytes are one of the most available stages for cryopreservation because the cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, it has generally been reported that the fertility and developmental ability of the oocytes are reduced by cryopreservation. C57BL/6J mice, an inbred strain, are used extensively for the production of transgenic and knockout mice. If the oocytes from C57BL/6J mice can be successfully cryopreserved, the cryopreservation protocol used will contribute to the high-speed production of not only gene-modified mice but also hybrid mice. Very recently, we succeeded in the vitrification of mouse oocytes derived from ICR (outbred) mice. However, our protocol can be applied to the vitrification of oocytes from an inbred strain. The aim of the present study was to establish the vitrification of oocytes from C57BL/6J mice. First, the effect of cumulus cells on the ability of C57BL/6J mouse oocytes to fertilize and develop in vitro was examined. The fertility and developmental ability of oocyte-removed cumulus cells (i.e., denuded oocytes, or DOs) after IVF were reduced compared to cumulus oocyte complexes (COCs) in both fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop into the 2-cell and blastocyst stages compared to the vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate, equivalent to the rate obtained with IVF using fresh COCs. Taken together, our results demonstrate that we succeeded for the first time in the vitrification of mouse oocytes from C57BL/6J mice. Our findings will also contribute to the improvement of oocyte vitrification not only in animals but also in clinical applications for human infertility
Highly successful production of viable mice derived from vitrified germinal vesicle oocytes.
The vitrification of immature germinal vesicle (GV) oocytes is an important way to preserve genetic resources and female fertility. However, it is well known that cryopreserved GV oocytes have very poor developmental ability and that further improvement in this technique is needed. We previously reported the successful vitrification of matured mouse oocytes with enclosed cumulus cells using the calcium-free vitrification solution supplemented with ethylene glycol (EG) by the minimal volume cooling (MVC) method. In this study, we investigated whether our method is applicable to the vitrification of mouse oocytes at the GV stage (GV oocytes). Following maturation and fertilization in vitro, vitrified GV oocytes showed high survival (94.3 ± 2.0%) and maturation (94.3 ± 2.1%) rates. Although the fertilization and blastocyst rates of vitrified oocytes (fertilization: 46.6 ± 4.9% and blastocyst: 46.6 ± 3.0%) were significantly lower than those of fresh oocytes (fertilization: 73.0 ± 7.1% and blastocyst: 71.6 ± 8.0%) (P 0.05). In conclusion, we here show, for the first time, the efficient production of live mice derived from vitrified GV oocytes
- …