6,274 research outputs found

    Germ Line-Specific DNA Sequences are Present on All Five Micronuclear Chromosomes in \u3cem\u3eTetrahymena thermophila\u3c/em\u3e

    Get PDF
    The development of the macronucleus from the zygotic micronucleus in the ciliated protozoan Tetrahymena spp. involves the elimination of specific DNA sequences (M. C. Yao and M. Gorovsky, Chromosoma 48:1-18 1974). The present study demonstrates that micronucleus-specific DNA is present on all five of the micronuclear chromosomes. Fragments of micronuclear DNA from Tetrahymena thermophila were cloned in the plasmid vector pBR322. A procedure was developed to examine the organization of the cloned sequences in micro- and macronuclear DNA without nick translating each individual probe. Twenty-three percent of randomly selected DNA sequences examined by this method were micronucleus (germ line) specific. They were all members of families of repeated sequences. Hybridization of six micronucleus-specific DNA sequences to micronuclear DNA from nullisomic strains of T. thermophila, which are lacking one or more pairs of chromosomes in the micronucleus, suggested that these sequences are present on several chromosomes. One micronucleus-specific sequence was shown by in situ hybridization to be present on all five of the micronuclear chromosomes

    Friendship networks and social status

    Full text link
    In empirical studies of friendship networks participants are typically asked, in interviews or questionnaires, to identify some or all of their close friends, resulting in a directed network in which friendships can, and often do, run in only one direction between a pair of individuals. Here we analyze a large collection of such networks representing friendships among students at US high and junior-high schools and show that the pattern of unreciprocated friendships is far from random. In every network, without exception, we find that there exists a ranking of participants, from low to high, such that almost all unreciprocated friendships consist of a lower-ranked individual claiming friendship with a higher-ranked one. We present a maximum-likelihood method for deducing such rankings from observed network data and conjecture that the rankings produced reflect a measure of social status. We note in particular that reciprocated and unreciprocated friendships obey different statistics, suggesting different formation processes, and that rankings are correlated with other characteristics of the participants that are traditionally associated with status, such as age and overall popularity as measured by total number of friends.Comment: 7 pages, 6 figure

    DNA Synthesis, Methylation and Degradation During Conjugation in \u3cem\u3eTetrahymena thermophila\u3c/em\u3e

    Get PDF
    We have investigated the timing of DNA synthesis, methylation and degradation during macronuclear development in the ciliate, Tetrahymena thermophila. DNA synthesis was first detected in the anlagen early in macronuclear development, but the majority of DNA synthesis occurred later, after pair separation. Anlagen DNA was first detectably methylated at GATC sites 3–5 hours after its synthesis. Once initiated, de novo methylation was rapid and complete, occurring between 13.5 and 15 hours of conjugation. The level of methylation of GATC sites was constant throughout the remainder of conjugation, and was similar to that in mock-conjugated cells. Degradation of DNA in the old macronucleus and DNA synthesis in the anlagen began at about the same time. Upon pair separation, less than 20% of old macronuclear DNA remained. A small percentage of nucleotides prelabeled prior to conjugation were recycled in the developing analgen

    Diverse Sequences within Tlr Elements Target Programmed DNA Elimination in \u3cem\u3eTetrahymena Thermophila\u3c/em\u3e

    Get PDF
    Tlr elements are a novel family of ~30 putative mobile genetic elements that are confined to the germ line micronuclear genome in Tetrahymena thermophila. Thousands of diverse germ line-limited sequences, including the Tlr elements, are specifically eliminated from the differentiating somatic macronucleus. Macronucleusretained sequences flanking deleted regions are known to contain cis-acting signals that delineate elimination boundaries. It is unclear whether sequences within deleted DNA also play a regulatory role in the elimination process. In the current study, an in vivo DNA rearrangement assay was used to identify internal sequences required in cis for the elimination of Tlr elements. Multiple, nonoverlapping regions from the ~23-kb Tlr elements were independently sufficient to stimulate developmentally regulated DNA elimination when placed within the context of flanking sequences from the most thoroughly characterized family member, Tlr1. Replacement of element DNA with macronuclear or foreign DNA abolished elimination activity. Thus, diverse sequences dispersed throughout Tlr DNA contain cis-acting signals that target these elements for programmed elimination. Surprisingly, Tlr DNA was also efficiently deleted when Tlr1 flanking sequences were replaced with DNA from a region of the genome that is not normally associated with rearrangement, suggesting that specific flanking sequences are not required for the elimination of Tlr element DNA

    A Family of DNA Sequences is Reproducibly Rearranged in the Somatic Nucleus of \u3cem\u3eTetrahymena\u3c/em\u3e

    Get PDF
    A small family of DNA sequences Is rearranged during the development of the somatic nucleus in Tetrahymena. The family is defined by 266 bp of highly conserved sequence which restriction mapping, hybridization and sequence analysis have shown is shared by a cloned micronuclear fragment and three sequences which constitute the macronuclear family. Genomic Southern hybridization experiments indicate there are five members of the family in micronuclear DNA. All of the family members are present in whole genome homozygotes and are therefore nonallellic. The three macronuclear sequences are all present in clonal cell lines and are reproducibly generated in every developing macronucleus. The rearrangement event begins 14 hours after conjugation is initiated and is nearly completed by 16 hours

    Methylation of Replicating and Nonreplicating DNA in the Ciliate \u3cem\u3eTetrahymena thermophila\u3c/em\u3e

    Get PDF
    Methylation of adenine in replicating and nonreplicating DNA of the ciliate Tetrahymena thermophila was examined. In growing cells, 87% of the methylation occurred on the newly replicated daughter strand, but methylation was also detectable on the parental strand. Methylation of nonreplicating DNA from starved cells was demonstrated

    The triangle groups (2,4,5) and (2,5,5) are not systolic

    Get PDF
    In this paper we provide new examples of hyperbolic but nonsystolic groups by showing that the triangle groups (2,4,5)(2,4,5) and (2,5,5)(2,5,5) are not systolic. Along the way we prove some results about subsets of systolic complexes stable under involutions.Comment: 37 pages, 16 figure

    A Family of Developmentally Excised DNA Elements in \u3cem\u3eTetrahymena\u3c/em\u3e is under Selective Pressure to Maintain an Open Reading Frame Encoding an Integrase-Like Protein

    Get PDF
    Tlr1 is a member of a family of ~20-30 DNA elements that undergo developmentally regulated excision during formation of the macronucleus in the ciliated protozoan Tetrahymena. Analysis of sequence internal to the right boundary of Tlr1 revealed the presence of a 2 kb open reading frame (ORF) encoding a deduced protein with similarity to retrotransposon integrases. The ORFs of five unique clones were sequenced. The ORFs have 98% sequence conservation and align without frameshifts, although one has an additional trinucleotide at codon 561. Nucleotide changes among the five clones are highly non-random with respect to the position in the codon and 93% of the nucleotide changes among the five clones encode identical or similar amino acids, suggesting that the ORF has evolved under selective pressure to preserve a functional protein. Nineteen TIC transitions in T/CAA and T/CAG codons suggest selection has occurred in the context of the Tetrahymena genome, where TAA and TAG encode Gin. Similarities between the ORF and those encoding retrotransposon integrases suggest that the Tlr family of elements may encode a polynucleotide transferase. Possible roles for the protein in transposition of the elements within the micronuclear genome and/or their developmentally regulated excision from the macronucleus are discussed
    corecore