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The development of the macronucleus from the zygotic micronucleus in the
ciliated protozoan Tetrahymena spp. involves the elimination of specific DNA
sequences (M. C. Yao and M. Gorovsky, Chromosoma 48:1-18 1974). The
present study demonstrates that micronucleus-specific DNA is present on all five
of the micronuclear chromosomes. Fragments of micronuclear DNA from Terra-
hymena thermophila were cloned in the plasmid vector pBR322. A procedure was
developed to examine the organization of the cloned sequences in micro- and
macronuclear DNA without nick translating each individual probe. Twenty-three
percent of randomly selected DNA sequences examined by this method were
micronucleus (germ line) specific. They were all members of families of repeated
sequences. Hybridization of six micronucleus-specific DNA sequences to micro-
nuclear DNA from nullisomic strains of T. thermophila, which are lacking one or
more pairs of chromosomes in the micronucleus, suggested that these sequences
are present on several chromosomes. One micronucleus-specific sequence was
shown by in situ hybridization to be present on all five of the micronuclear

chromosomes.

The ciliated protozoa of the genus Tetrahyme-
na contain a diploid germ line micronu-
cleus and a polyploid macronucleus, which is
responsible for most, if not all, of the transcrip-
tional activity in a vegetative cell. During sexual
reproduction (conjugation), the macronucleus is
destroyed and is replaced by a new macronucle-
us which develops from one of the mitotic
products of the zygotic micronucleus. The de-
velopment of the new macronucleus involves
extensive genome reorganization, including po-
lyploidization of the bulk of the genome to the
level of 45c, amplification of the genes which
code for 17S and 25S rRNA, and the possible
fragmentation of the chromosomes into subchro-
mosomal elements (for a review, see reference
12). Renaturation kinetics of micro- and macron-
uclear DNA suggest that 10 to 20% of the
micronuclear DNA is eliminated during the for-
mation of the macronucleus and that most of
these sequences are repeated on the order of 100
times in the micronuclear genome (34).

Several micronucleus-specific (mic-specific)
DNA sequences have been isolated on the basis
of linkage in the micronuclear genome to the
sequence C-C-C-C-A-A. This hexanucleotide
occurs in blocks of tandem repeats which have
very different arrangements in the micro- and
macronuclear genomes (31). C4A,; repeats occur
predominantly at the ends of DNA molecules in
the macronucleus (6, 36). The C;A, repeats

which have been isolated from micronuclear
DNA thus far are all flanked by mic-specific
DNA sequences. At least one single-copy mic-
specific sequence and several families of repeat-
ed mic-specific sequences have been identified
by this approach (6, 30).

Very little is known about the mechanisms
whereby some DNA sequences are eliminated
from the developing macronucleus and others
are retained. One possible model would invoke
underreplication and subsequent dilution of the
mic-specific sequences in the macronuclei of
dividing cells. However, Yokoyama and Yao
(37) have presented evidence that mic-specific
DNA is replicated a few times early in the
formation of the macronuclear anlagen and then
is eliminated, presumably by specific degrada-
tion, before any nuclear division occurs.

The localization of mic-specific DNA se-
quences on the five micronuclear chromosomes
of Tetrahymena spp. places constraints on the
mechanism of chromatin diminution in this orga-
nism. If all of the mic-specific DNA sequences,
and only mic-specific DNA, are present on one
of the five micronuclear chromosomes, that
chromosome can be completely eliminated from
the macronuclear genome. Alternatively, if mic-
specific DNA sequences were present on sever-
al of the micronuclear chromosomes, then some
fragmentation of the genome must occur during
the development of the macronucleus to sepa-
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rate DNA sequences which are eliminated from
those which are retained.

Two kinds of evidence support the latter mod-
el. First, there is a single copy of the 17S and 25S
RNA-coding sequences (rDNA) in the micronu-
cleus of Tetrahymena spp. It is excised from the
genome (32) and amplified several hundredfold
in the macronucleus (35), where it is present in
the form of 21-kilobase (kb) extrachromosomal
inverted repeats (9, 10, 16). Excision of the
rDNA from the micronuclear chromosome in-
volves chromosome breakage with the elimina-
tion of 2.8 kb of flanking DNA and the genera-
tion of a free chromosome end in the
macronucleus (29). Thus, one mic-specific se-
quence lies between the only DNA sequence
which has been shown to be highly amplified in
the macronuclear DNA and a sequence which
will be converted to a telomere. Second, Yao
(30) hybridized a mic-specific sequence to mi-
cronuclear DNA from a strain which lacks three
of the five micronuclear chromosomes. The
probe hybridized to a subset of the bands which
appear in the micronuclear DNA from a wild-
type cell, suggesting that some, but not all,
copies of that sequence were present on one or
more of the chromosomes 2, 3, and §.

The work described here extended that obser-
vation by a systematic analysis of six different
mic-specific sequences selected at random.
They were hybridized to micronuclear DNA
from seven nullisomic strains of Tetrahymena
thermophila which, taken together, cover the
entire genome. The results indicated that none
of these sequences, which are each repeated in
the genome, was located exclusively on any one
chromosome. These results were confirmed by
in situ hybridization, which showed that at least
one of these sequences is present on all five
chromosomes.

MATERIALS AND METHODS

Cell culture. For DNA extractions, T. thermophila
wild-type strain BVII and nullisomic strains CU371
(nulli 1L, 2R), CU373 (nulli 1R), CU359 (nulli 2, 3, 5),
CU361 (nulli 3), CU358 (nulli 3, 4, 5), CU357 (nulli 4),
and CU359 (nulli S) were grown in 2% protease
peptone-0.1% yeast extract-0.003% sequestrine
(PPYS), prepared as described by Gorovsky et al. (14).
Cultures in 500 ml of medium were maintained at 29°C
in 11 diphtheria toxin bottles and were aerated with a
gas dispersion tube. For mating, strains CU399:Chx/
Chx (cy-s, VI) and CU401:Mpr/Mpr (6mp-s, VII) were
grown in 500-ml Erlenmeyer flasks containing 100 ml
of PPYS in a shaking incubator at 125 rpm, 29°C.

Subcellular fractionation. Micronuclei were separat-
ed from macronuclei by the procedure of Gorovsky et
al. (14). Mitochondria were isolated by the method of
Schwab-Stey et al. (27).

DNA isolation. Macronuclear DNA was extracted
from the first macronuclear pellet prepared by the

MoL. CELL. BioL.

procedure of Gorovsky et al. (14). The pelleted nuclei
were lysed in 1% sodium dodecyl sulfate (SDS) in
0.1x SSC (standard saline citrate; 1x SSC is 0.15 M
NaCl plus 15 mM sodium citrate, pH 7.0). The lysate
was incubated for 2 to 4 h at 37°C in 100 wg of pronase
per ml and was phenol extracted, and nucleic acids
were precipitated from the aqueous layer by adding 2
volumes of cold 95% ethanol. The precipitate was
redissolved in 2x SSC and was digested with 100 pg of
pancreatic RNAse A per ml-40 U of T1 RNAse per ml
at 37°C for 1 h. Pronase was added to a concentration
of 100 pg/ml, and digestion was continued for an
additional hour. The solution was phenol extracted,
and the DN A was precipitated from ethanol. DNA was
isolated from mitochondria by the same procedure
used for macronuclear DNA.

DNA was isolated from micronuclei by a simplified
procedure in which the pelleted micronuclei were
lysed in 1% SDS in 0.1 x SSC. The lysate was brought
to 100 ug of pronase per ml, incubated at 37°C for 1 h,
and phenol extracted. The DNA was precipitated by
the addition of NaCl to 0.1 M and 2 volumes of cold
95% ethanol.

Construction of the plasmid bank and isolation of
plasmid DNA. DNA from a preparation of micronuclei
containing less than 0.3% contaminating macronuclei
(6% macronuclear DNA) was digested with the restric-
tion enzyme Hindlll. The fragments were ligated to
the plasmid vector pBR322, which had been digested
with HindlII and treated with calf intestine alkaline
phosphatase. Transformants resistant to 20 ug of
ampicillin per ml and susceptible to 20 ug of tetracy-
cline per ml were stored in microtiter plates as de-
scribed by Gergen et al. (11).

Plasmid DNA was prepared by the method of
Meagher et al. (20), except that the ether extraction
was omitted. Precipitated DNA was redissolved in 270
wl of S mM Tris-0.25 mM EDTA (pH 7.9) and trans-
ferred to a microfuge tube. Thirty microliters of 0.5 M
magnesium acetate-2.5 M lithium acetate was added,
and the DNA was precipitated a second time by the
addition of 3 volumes of 95% ethanol. Precipitated
DNA was stored at —20°C.

Filter hybridization. DNA was digested with the
restriction endonuclease Hindlll (Bethesda Research
Laboratories) under the conditions recommended by
the supplier. DNA fragments were separated by elec-
trophoresis through 0.7% agarose gels in 40 mM Tris
base-20 mM sodium acetate-2 mM disodium EDTA-
18 mM NaCl (pH 8.0) buffer for 390V - h. The DNA
was transferred to nitrocellulose filters by the method
of Southern (28) and was probed with DNA nick
translated as described by Maniatis et al. (17).

Preliminary screening of the plasmid bank for re-
peated mic-specific DNA sequences was carried out
by a two-step sandwich hybridization procedure. Un-
labeled recombinant plasmid DNA was linearized by
digestion with the. restriction enzyme PstI, heat dena-
tured, and prehybridized to genomic DNA immobi-
lized on a nitrocellulose filter in 50% formamide-5x
SSC-25 mM sodium phosphate (pH 6.8)-1x Denhardt
solution-200 g of sonicated, alkali-denatured salmon
sperm DNA per ml for 8 to 18 h at 33°C. Excess
plasmid DNA was removed by rinsing the filter in the
bag with 5 ml of hybridization solution without plas-
mid DNA. The filters were subsequently hybridized
with radioactive plasmid pBR322 under the same
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conditions used for the first hybridization, except that
incubation was at 42°C. The probe hybridizes to the
vector portion of the recombinant plasmid DNA,
which is in turn hybridized to the homologous DNA
fragment on the filter. This procedure obviates the
necessity of separately nick translating each cloned
fragment.

After hybridization, the filters were washed four
times for at least 30 min each at increasing stringency:
first wash, 5x SSC, 1x Denhardt solution, and 0.1%
SDS at 42°C; second wash, 6x SSC and 0.1% SDS at
55°C; third wash, 2x SSC and 0.1% SDS at 55°C;
fourth wash, 2x SSC at 55°C. Putative mic-specific
DNA clones were tested for homology to nick-trans-
lated mitochondrial DNA by hybridization under the
same conditions as described above, at 33°C.

Cytology. Matings were done by the method of
Bruns and Brussard (7). Strains CU399 (mating type
VI) and CU401 (mating type VII) were grown to a
density of 2.5 x 10° cells per ml in PPYS. The cells
were pelleted by centrifugation at 100 x g for 1.5 min,
washed in 10 mM Tris (pH 7.4), gently resuspended in
the same solution at a density of 10° cells per ml, and
starved separately for 23 h. The cells were counted,
and equal numbers were mixed together, diluted to 8 x
10* cells per ml, and incubated at 29°C without shaking
to permit pairing. At 1.5 h after mixing, 77% of the
cells were in pairs. Pairing reached 91% by 4.5 h, at
which time the cells were fixed.

Mating cells were concentrated from 100 to 0.75 ml
by centrifugation at 100 x g for 1.5 min and were fixed
for 10 min at room temperature by adding the concen-
trated cell suspension to 9 ml of fresh Schaudinn
fixative (2 parts of saturated HgCl,, 1 part of absolute
ethanol, 1.5% glacial acetic acid). The cells were
washed three times for 5 min in 70% ethanol. Fixed
cells can be stored in 70% ethanol at 4°C for several
days. Longer storage decreases cell spreading and
chromosome dispersion when the slides are prepared.

Cells were postfixed by transferring 10 drops of the
cell suspension in a pipette into 4 ml of fresh absolute
ethanol-glacial acetic acid (3:1). After Sminto1h, a
drop of the cell suspension was allowed to fall from a
height of 30 cm onto a clean microscope slide and was
air dried.

Slides were treated before hybridization essentially
by the method of Yokayama and Yao (37). They were
washed for 10 min each in 70% ethanol, and in two
washes of 0.01% I, in 70% ethanol (to remove excess
HgCl,), dehydrated in 70, 95, and 100% ethanol, and
air dried. The slides were then incubated for 30 min at
70°C in 2x SSC (3) and rinsed three times for 10 min in
0.1 M triethanolamine (pH 8.0). Acetic anhydride was
added to the third thiethanolamine rinse, with stirring
(15), and the slides were dehydrated in ethanol as
above. Immediately before hybridization. the slides
were immersed in 0.07 N NaOH-0.3 M NaCl for 2.5
min to denature the DNA and then were dehydrated
by passage through ethanol.

Hybridizations were done in dextran sulfate by the
method of Yokoyama and Yao (37) except that salmon
sperm DNA at a final concentration of 200 pg/ml was
the carrier DNA. Plasmid DNA to be used as a probe
and pBR322 DNA to be used as a control were nick
translated with [*HJdTTP (97 Ci/mmol) to specific
activities of 6.5 x 10°and 5 x 10° dpm/pg, respective-
ly. Hybridization solution (68 wl) was placed on a slide
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and covered with a cover slip (22 by 50 mm), and the
preparations were incubated in a moist chamber at
37°C for 16 h. Cover slips were removed by dipping the
slides in 2x SSC. Slides were rinsed twice for 20 min
in 2x SSC at 25°C, three times for 20 min in 3x SSC at
55°C, and once for 10 min in 2x SSC at 25°C and were
dehydrated in ethanol. They were coated with NTB-2
emulsion, exposed for 10 to 30 days at 4°C, developed,
and stained with Giemsa stain by the method of Pardue
and Gall (24).

RESULTS

Fragments with homology to a cloned DNA
fragment can be detected in restricted genomic
DNA by sandwich hybridization. To obtain a
source of DNA fragments which was repre-
sentative of the sequences in the micronuclear
genome, micronuclear DNA was digested with
the restriction enzyme HindIIl and cloned into
the Hindlll site of the plasmid vector pBR322.
Recombinant plasmids were taken at random
and screened for the presence of mic-specific
DNA sequences.

Preliminary screening of the plasmid bank was
done by a new method, which is described
diagrammatically in Fig. 1. Tetrahymena nuclear
DNA was digested with HindIIl. The fragments
were separated on a 0.7% agarose gel and trans-
ferred to a nitrocellulose filter by the method of
Southern (28; Fig. 1a). The plasmid we used was
pTtIC6, which contained a 3.5-kb fragment of
Tetrahymena DNA inserted at the HindIII site
of pBR322. Digestion of the plasmid DNA
showed that the insert did not contain any sites
recognized by the restriction enzyme Pstl. The
plasmid DNA was linearized by digestion with
Pst1, which recognizes a single site in pBR322.
The restricted plasmid DNA was denatured and
hybridized to the homologous Tetrahymena
DNA on the filter (Fig. 1b). Nick-translated
pBR322 was subsequently hybridized to the
vector portion of the plasmid (Fig. 1c) and
detected by autoradiography.

Figure 2 shows that the presence of unlabeled
plasmid DNA, with vector covalently linked to
the cloned fragment, was required to obtain a
signal by sandwich hybridization. Each of the
three filters shown in Fig. 2 had bound to it DNA
transferred from two lanes of an agarose gel,
each containing 2 pg of Tetrahymena macronu-
clear DNA digested with HindIIl. In every case,
plasmid pBR322 restricted with HindIII was
included in the DNA sample on the left as a
positive control for hybridization. The filters
differed in the presence or treatment of the
plasmid DNA in the middle of the sandwich.
They were all probed with radioactive pBR322
DNA.

The left lane of every pair had a band at 4.3 kb
which resulted from hybridization of the nick-
translated plasmid pBR322 to pBR322 DNA on
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FIG. 1. Diagram of sandwich hybridization. The

circle represents a fragment of Tetrahymena genomic
DNA (heavy line) inserted at the HindIIl site of
plasmid pBR322 (light line). P indicates the presence
of a Pstl site 779 base pairs from the HindllI site. (a)
Restriction fragments of Tetrahymena genomic DNA
immobilized on a filter; (b) insert portion of the
plasmid hybridized to the homologous DNA on the

filter; (c) nick-translated vector DNA hybridized to the
vector portion of the plasmid.

the filter. Filter a in Fig. 2 was prehybridized in
the absence of unlabeled plasmid DNA. The
right lane of this filter shows that pPBR322 has no
detectable homology with Tetrahymena DNA
under these conditions of hybridization.

The filters in Fig. 2b and ¢ were prehybridized
in the presence of unlabeled plasmid DNA con-
sisting of the 3.5-kb fragment of Tetrahymena
DNA cloned in pBR322. Plasmid DNA used to
prehybridize filter b was linearized by digestion
with the restriction enzyme Pstl. Prehybridiza-
tion with unlabeled plasmid DNA permits sand-
wich hybridization of the pBR322 DNA to the
Tetrahymena DNA on the filter and produces a
band at 3.5 kb.

The critical control for this experiment is
shown for filter c. This filter was prehybridized
with the sample of plasmid DNA which had been
digested with both PstI and HindIIl. Digestion
with HindIII separates the vector portion of the
plasmid from the insert. Thus, although the
Tetrahymena DNA insert is presumably hybrid-
ized to the homologous DNA on the filter, the
vector tails have been removed, preventing
sandwich hybridization. The lack of a band at
3.5 kb in filter ¢ strongly indicates that this band
was a result of sandwich hybridization in filter b.

Preliminary characterization of a partial plas-
mid bank of Tetrahymena micronuclear DNA.
The method of cloning we chose was expected
to yield an assortment of plasmids which were a
random sample of the sequences in the micronu-
clear (germ line) genome. To date we have
analyzed 68 clones by the sandwich hybridiza-
tion procedure. Since we have not yet been able
to achieve reproducible single-copy sensitivity
with this method, it was most useful for the
detection of sequences which were repeated in
the genome.
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One of the 68 plasmids contained a sequence
which was repeated in both micronuclear and
macronuclear DNA. We have tentatively identi-
fied 16 clones (23% of the sample) as mic-
specific. Each of the 16 was homologous to a
different family of mic-specific DNA sequences
which were repeated in the micronuclear
genome as shown by the intensity of hybridiza-
tion and by homology of the cloned DNA frag-
ment to several fragments in restricted micronu-
clear DNA. An example of a cloned fragment
which was shown by sandwich hybridization to
belong to a family of mic-specific sequences is
presented in Fig. 3. Two single-copy mic-specif-
ic sequences have been isolated by subcloning
plasmids which contained repeated mic-specific
elements.

Of the 51 cloned fragments which gave no
signal in sandwich hybridization, 8 were re-
screened by standard methods. Seven fragments
hybridized to single bands of the same size in
micro- and macronuclear DNA. One sequence
hybridized to six HindIlI fragments in micronu-
clear DNA which were rearranged to three dif-
ferent HindIIl fragments in the macronuclear
DNA. Rescreening did not reveal any additional
single-copy mic-specific sequences.

The mic-specific sequences we have isolated are
not homologous to mitochondrial DNA. To obtain

a b c

FIG. 2. Sandwich hybridization. Three identical
filters with 2 ng of HindIll-digested Tetrahymena
DNA in each lane, transferred from an agarose gel by
the method of Southern (28). The left lane on each
filter also contains HindIII-digested plasmid pBR322
DNA as an internal control. Filter a was prehybridized
in the absence of plasmid DNA. Filters b and ¢ were
prehybridized with DNA from the plasmid pTtIC6, a
3.5-kb fragment of Tetrahymena DNA inserted at the
Hindlll site of pBR322. In both cases, the plasmid
DNA was digested with Pstzl. The plasmid DNA used
to prehybridize filter ¢ was digested with HindIII in
addition. Each filter was hybridized with 1.2 x 10’
cpm of nick-translated pBR322 DNA.



VoL. 3, 1983

micronuclear DNA for cloning, micro- and mac-
ronuclei were separated by differential centrifu-
gation by the procedure of Gorovsky et al. (14).
Since isolated mitochondria of Tetrahymena
pyriformis have been reported to be nearly as
large as the micronucleus (27), we were con-
cerned that mitochondria might have copurified
with the micronuclei and that some of the mic-
specific DNA sequences we had identified might
therefore actually be mitochondrial in origin.
To eliminate this possibility, we prepared mi-
tochondria by the procedure of Schwab-Stey et
al. (27) and isolated the DNA. The DNA was
identified as mitochondrial by comparing its
restriction map with the published maps for the
restriction enzymes EcoRI and HindIII (23).
Clones of putative mic-specific DNA were di-
gested with HindlIl. The DNA was electrophor-
esed on an agarose gel and transferred to a
nitrocellulose filter with restricted mitochondrial

A B
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FIG. 3. HindlIlI digests of equal amounts of Tetra-
hymena micro- and macronuclear DNA. The frag-
ments were separated by electrophoresis on an agar-
ose gel. The DNA was transferred to a nitrocellulose
filter and hybridized by the sandwich procedure to
nick-translated plasmid pBR322 in the presence of the
pBR322 plasmid carrying the Tetrahymena DNA in-
sert IC1. (A) Ethidium bromide-stained gel of HindIII-
digested A phage DNA, micronuclear DNA (a), and
macronuclear DNA (b). (B) Autoradiogram of the
filter after hybridization. There is no hybridization of
the mic-specific sequence IC1 to macronuclear DNA.
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FIG. 4. Mitochondrial DNA (lane a) and several
plasmids containing mic-specific Tetrahymena DNA
sequences (lanes ¢ through g) digested with HindIII
and run on an agarose gel. The DNA was transferred
to a nitrocellulose filter and hybridized with nick-
translated mitochondrial DNA. (A) Ethidium bromide-
stained gel. The upper band in lanes ¢ through g is
pBR322, and the lower band is the Tetrahymena DNA
insert (c, 11A8; d, 1IIB4; e, IC1; f, ID10; g, IIC7). (B)
Autoradiogram of the filter after hybridization with
mitochondrial DNA. There is no homology with puta-
tive mic-specific DNA sequences, indicating they are
not mitochondrial in origin. Lane b contains mitochon-
drial DNA partially digested with EcoRI.

DNA as a positive control. Nick-translated
mitochondrial DNA did not hybridize to any of
the mic-specific DNA sequences tested (Fig. 4).

Mic-specific DNA sequences are present on
more than one chromosome. Certain features of
the genetics of T. thermophila allow one to map
any particular DNA sequence to one or more of
the five micronuclear chromosomes by Southern
blot analysis. Peter Bruns and his colleagues
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have been able to construct strains of T. thermo-
phila which are heterokaryons. These cells have
the normal complement of DNA in the macronu-
cleus but are lacking one or more pairs of
chromosomes in the micronucleus (8). Since the
macronucleus is the site of most, if not all, of the
transcriptional activity in a vegetative cell (13,
19), the cells are viable as long as they are
maintained in the vegetative state.

The availability of these cell lines provides an
opportunity for mapping DNA sequences to the
five Tetrahymena chromosomes. In this meth-
od, a particular DNA sequence is hybridized to
micronuclear DNA from various strains which
are lacking different combinations of chromo-
somes. Any DNA sequence which is derived
from a particular chromosome does not hybrid-
ize to micronuclear DNA from strains which
lack that chromosome but does hybridize as
usual to DNA from strains which retain it.

We mapped six different mic-specific DNA
sequences to the various chromosomes by hy-
bridizing the cloned DNA to micronuclear DNA
from nullisomic strains. Four representative ex-
periments are shown in Fig. 5. Each mic-specific
DNA sequence hybridized to DNA from every
nullisomic strain tested. The simplest interpreta-
tion of these data is that none of the mic-specific
DNA sequences examined thus far is located
exclusively on any one chromosome (or chro-
mosome arm in the case of chromosome 1).

Micronuclear DNA preparations, particularly
those from nullisomic strains of Tetrahymena
spp., are always contaminated to some extent
with macronuclear DNA. The percentage of
macronuclear DNA varies from preparation to
preparation and cannot be measured with preci-
sion. Thus, it is not useful to compare the
intensities of hybridization from lane to lane. It
is, however, valid to compare the relative inten-
sities of several bands within a lane.

Changes in the relative intensity of various
bands from one nullisomic strain to another are
indicative of unequal distribution of the mem-
bers of a family of repeated sequences on the
five micronuclear chromosomes. The mic-spe-
cific sequence IIA8, for example, hybridized
primarily to two HindlII fragments in genomic
DNA of 2 and 4 kb. Both of these fragments are
repeated in the micronuclear genome as judged
by the intensity of hybridization. In the micronu-
clear DNA from wild-type cells and from most
nullisomic strains, the probe hybridized with
slightly greater intensity to the 2-kb band. How-
ever, hybridization to the 4-kb band was
stronger in micronuclear DNA from strain
CU373, which is nullisomic for 1R, indicating
that the 2-kb fragment is present in a dispropor-
tionately large amount on the right arm of chro-
mosome 1 (Fig. SA, lane b).
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A similar observation was made in the case of
the mic-specific sequence IB6 (Fig. SB). This
clone hybridized strongly to a band at 1.3 kb in
micronuclear DNA from wild-type and from
most nullisomic strains. In the micronuclear
DNA from these strains, there was also hybrid-
ization with much lower intensity to several
other bands (arrows), including one at 1.6 kb. In
the micronuclear DNA from strain CU373, how-
ever, the band at 1.3 kb hybridized at lower
intensity relative to the larger fragments, partic-
ularly the fragment at 1.6 kb. The simplest
interpretation of these data is that the copy
number of the 1.3-kb IB6 fragment was reduced
in the strain lacking the right arm of chromo-
some 1. The same result was obtained in two
independent experiments and was therefore un-
likely to be due to incomplete digestion of the
DNA.

For those mic-specific sequences which are
members of large families of repeated se-
quences, the patterns of hybridization were very
similar from one nullisomic strain to another.
Mic-specific sequences such as IIC7 (Fig. 5C)
hybridized to a large number of fragments so
that most of them were not resolved on the
autoradiogram. In the case of the mic-specific
sequence IC1, however, (Fig. 3 and 5D), individ-
ual bands were absent from or underrepresented
in the DNA from particular nullisomic strains.
This suggests that the various members of the
family of repeated sequences were unequally
distributed on the five chromosomes and sup-
ported the hypothesis that mic-specific se-
quences were present on more than one chromo-
some.

In situ hybridization demonstrates that IIA8 is
present on all five Tetrahymena chromosomes.
Given the strains we have examined thus far, it
is clear from the nullisomic mapping that mic-
specific DNA sequences are not located exclu-
sively on chromosome 2, 3, 4, or 5. There is,
however, some ambiguity with regard to chro-
mosome 1. Since the chromosomes of Tetrahy-
mena spp. are quite small and since all five are
metacentric (Fig. 6a), they are not readily distin-
guishable from one another cytologically. The
chromosome(s) absent from any particular strain
is therefore identified by genetic criteria. Strains
which are identified as lacking one chromosome
arm, such as CU371 and CU373, may well retain
any part of that arm for which there are no
genetic markers, such as centromeric hetero-
chromatin. Thus, one possible, albeit unlikely,
interpretation of the data in Fig. 5 is that mic-
specific DNA sequences are located exclusively
in centromeric heterochromatin on chromosome
1.

To eliminate the ambiguity in the nullisomic
mapping, we mapped the repeated sequence
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FIG. 5. Hybridization of mic-specific DNA sequences to HindIII-digested micronuclear and macronuclear
DNA and to micronuclear DNA from strains nullisomic for chromosome(s) as follows: lane a, 1L, 2R; lane b, 1R;
lane c, 2, 3, 5; lane d, 3, 4, 5; lane e, 3; lane f, 4; lane g, 5. The nick-translated plasmids used to probe the filters
were pTtIIA8 (A), pTtIB6 (B), pTtIIC7 (C), and pTtIC1 (D).

I1A8 to all five Tetrahymena chromosomes by in
situ hybridization. Optimal morphology chromo-
some was obtained by fixing conjugating cells
during meiosis. Strains CU399 (mating type VI)
and CU401 (mating type VII) were starved over-

night in 10 mM Tris, pH 7.4, and mixed to
induce conjugation (7). We obtained the best
chromosomes from cells at metaphase of the
second meiotic division. To maximize the num-
ber of cells at this stage, mating pairs were fixed
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FIG. 6. (a) Five metacentric chromosomes from one of the micronuclei in a pair of mating T. thermophila.
The large round objects are macronuclei. (b) Pair of conjugating cells fixed after the first meiotic division and
hybridized in situ with the mic-specific DNA sequence in pTtIIA8. (c and d) Autoradiographs of pairs of
conjugating cells fixed at metaphase of the second meiotic division. In each case, the chromosomes from three
micronuclei have remained clustered. Small arrows indicate the five chromosomes from the fourth micronucleus
in the cell pair, each of which has silver grains associated with it owing to hybridization of the mic-specific

sequence in pTtIIA8. Magnification, X600.

at 4.5 h after the mixing of the two mating types
(18).

The cells were fixed in Schaudinn fixative,
postfixed in ethanol-acetic acid (3:1), and
dropped onto a clean slide. Under these condi-
tions, the bivalents from each of the micronuclei
in a cell pair tended to remain clustered. This
was important for the identification of the five
chromosomes which compose one complete set
among all of the chromosomes from the several
micronuclei in a given cell pair.

The plasmid pTtIIA8 was nick translated with
[PHIdTTP and hybridized to the cytological
preparations by the method of Yokoyama and

Yao (37). Figure 6b is an example of a cell pair
which was fixed after the first meiotic division,
hybridized with radioactive pTtIIA8, and ex-
posed for 30 days. In this cell pair, there were 15
to 34 silver grains exposed in the photographic
emulsion over each of the four micronuclei,
whereas the macronuclei had background levels
of 2 and 4 silver grains. This result is repre-
sentative of the cell pairs observed on several
different slides. The mean number of silver
grains counted over micronuclei was 27 + 8, and
over macronuclei in the same cell pairs only 5 +
3 (Table 1), even though the macronuclei contain
20 times as much DNA at this stage. Preferential
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labeling of micronuclei by in situ hybridization
was consistent with the molecular data, which
indicated that IIA8 is a mic-specific sequence.

Figures 6¢c and d are examples of cell pairs
fixed at metaphase II and hybridized with radio-
labeled pTtIIAS8. In each cell pair, the chromo-
somes from three of the micronuclei remained
closely associated, and chromosomes within a
micronucleus were not distinguishable under the
silver grains in the overlying emulsion. The five
bivalents from the fourth micronucleus (Fig. 6¢c
and d, arrows) were more widely separated, and
4 to 10 silver grains were associated with each of
them (Table 1, cells pairs 6), indicating that the
mic-specific sequence pTtIIA8 is present on
each of the five micronuclear chromosomes in 7.
thermophila. Since the chromosomes are very
small, the resolution of this technique does not
allow us to draw any conclusions regarding the
localization of this sequence along the length of
the chromosomes.

As a control, slides were prepared and hybrid-
ized in parallel with radiolabeled pBR322. These
preparations did not show significant numbers of
silver grains over the micronuclei or the micron-
uclear chromosomes. This strongly suggested
that the hybridization observed with the plasmid
pTtIIA8 can be ascribed to the inserted fragment
of Tetrahymena DNA and cannot be accounted
for by nonspecific association of the vector
DNA sequences with anything in the cytological
preparation.

DISCUSSION

We have been studying the structure and
chromosomal location of germ line-specific
DNA in the micronucleus of the ciliated proto-
zoan Tetrahymena spp. To this end, we have
constructed a partial plasmid bank of T. thermo-
phila micronuclear DNA digested with HindIII
and cloned into the HindIII site of plasmid
pBR322. This method is expected to produce
clones which are a random representation of the
sequences in the Tetrahymena genome. Prelimi-
nary screening of the plasmid bank was done by
sandwich hybridization. Of the 68 clones tested
by this method, 16 (23%) showed mic-specific
hybridization. One cloned fragment hybridized
to DNA which was repeated in both the micro-
and macronucleus. These results are consistent
with the data of Yao and Gorovsky (34), who
concluded from renaturation kinetics that mod-
erately repeated sequences in the micronucleus
were absent or underreplicated in the macronu-
cleus.

The major goal of this work was to map the
chromosomal location of mic-specific DNA se-
quences in Tetrahymena spp. Cytological analy-
sis indicates that the germ line-limited DNA
sequences in most organisms are organized as

GERM LINE-SPECIFIC DNA IN T. THERMOPHILA

1917

TABLE 1. In situ hybridization of mic-specific
sequence pTtIIA8 to conjugating T. thermophila

No. of silver grains

Slide Cell pair Micronuclei L::‘c:;:-
1 2 3 4 1 2

1 1 15 34 27 26 4 2
2 29 28 40 33 3 4

3 30 37 23 31 2 3

4 22 21 25 25 5 3

5 23 20 36 10 4 3

6 33 38 26 6+10+4+6+5 1 12

2 1 23 30 43 21 4 9
2 12 20 16 13 4 6

3 29 24 17 27 7 8

4 40 33 31 27 8 3

5 25 21 31 29 3 4

6 37 27 34 5+6+5+8+8 3 7

large blocks of contiguous sequences. At one
extreme are several members of the insect fam-
ily Cecidomyiidae, which eliminate entire chro-
mosomes from the soma (1, 22). In the nematode
Ascaris spp. (5), in which most of the germ line-
specific DNA belongs to families of short, tan-
demly repeated sequences (26), and in the crus-
tacean Cyclops spp. (2), the bulk of the
eliminated DNA sequences are present in the
germ line as blocks of heterochromatin at the
termini or near the centromeres of the chromo-
somes. We wanted to determine whether the
germ line-specific DNA in Tetrahymena spp. is
distributed over the chromosomes, as in the
nematodes and crustaceans, or concentrated on
a germ line-specific chromosome, as in the in-
sects.

Hybridization of mic-specific DNA sequences
to micronuclear DNA from nullisomic strains of
Tetrahymena spp. suggests that each of the six
sequences we have tested by this method is
present on more than one chromosome. One
mic-specific DNA sequence has been shown by
in situ hybridization to be present on all five
chromosomes. These data place certain con-
straints on the possible models for the arrange-
ment of germ line-specific sequences in the
micronucleus and for the mechanisms by which
they are eliminated from the macronucleus.

The evidence clearly excludes a model where-
by Tetrahymena spp. eliminates one of the five
germ line chromosomes and supports a model of
chromosome fragmentation similar to the one
originally proposed by Yao and Gall (33). Thus,
the characteristics which distinguish mic-specif-
ic DNA from sequences which are retained in
the developing macronuclear anlagen must oper-
ate subchromosomally, perhaps at the level of
DNA sequence or modification. Yao (30)
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reached this conclusion by the analysis of link-
age relationships between members of a family
of mic-specific DNA sequences associated with
C4A; repeats.

Yokoyama and Yao (37) have presented evi-
dence that mic-specific DNA is replicated a few
times early in the formation of the macronuclear
anlagen and is then eliminated, presumably by
specific degradation, before any nuclear division
occurs. Two laboratories (21, 25) have estimated
the size of the macronuclear DNA to be about
600 kb. The simplest model which is consistent
with these data and with the presence of mic-
specific DNA sequences on all five chromo-
somes is one in which in the micronucleus,
relatively long stretches of mic-specific DNA
alternate with DNA sequences which are re-
tained in the macronucleus. Mic-specific DNA
would be excised and degraded, and the remain-
ing DNA would be replicated in the macronucle-
us, perhaps, although not necessarily, without
extensive rearrangement.

We can calculate the average length of a
contiguous stretch of mic-specific DNA which
we would expect to find in the micronuclear
genome according to the above model. The
DNA content of the haploid micronucleus as
determined microspectrophotometrically by
Woodard et al. (J. Woodard, M. Gorovsky, and
E. Kaneshiro, J. Cell Biol. 39:182a, 1968) is 0.23
pg or about 2.1 x 10° kb. Assuming that about
20% of the micronuclear genome is absent from
the macronucleus, as suggested by our data,
then the complexity of macronuclear DNA
(which does not contain many repeated DNA
sequences) is about 1.7 x 10° kb. If the macro-
nuclear DNA is present in 600-kb subchromoso-
mal fragments, this would suggest that each of
the five Tetrahymena chromosomes is fragment-
ed into about 55 pieces in the macronucleus (25).
If we postulate that the fragmentation of mac-
ronuclear DNA is largely the result of elimina-
tion of alternating mic-specific DNA sequences
which are scattered over all the chromosomes, it
would follow that the 4 x 10* kb of mic-specific
DNA is in 250 to 300 tracts of approximately 140
kb each. The existence of relatively long stretch-
es of mic-specific sequences in the micronuclear
genome would be consistent with the observa-
tion of Yao (30) that six of seven randomly
selected phages containing mic-specific DNA
had only mic-specific DNA.

There is at least one family of repeated DNA
sequences in the Tetrahymena genome, the re-
peated hexanucleotide C4;A,, which undergoes
extensive rearrangement between the micro-
and macronuclear DNA (31). In the original
model of Yao and Gall (33), it was proposed that
fragmentation of the micronuclear chromosomes
occurred at or near C4A; repeats. Since subse-
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quent experiments show that most of the mi-
cronuclear C4A, repeats seem to be flanked on
both sides by mic-specific DNA (6, 30), it is
likely that the macronuclear C4A, repeats,
which are largely present at the termini of ma-
cronuclear DNA (6, 36), may be added to the
ends of the macronuclear DNA as the analogous
C4A, repeats are in the hypotrichous ciliate
Oxytricha spp. (4). This could occur either enzy-
matically or by rearrangement of micronuclear
C,4A; repeats. Whether the micronuclear C4A,
repeats are eliminated or rearranged to the ter-
mini of macronuclear DNA does not affect the
model offered here regarding the interspersion of
mic-specific and macronucleus-retained DNA
sequences in the micronuclear genome.
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