94 research outputs found

    A Forecast for Large Scale Structure Constraints on Horndeski Gravity with Line Intensity Mapping

    Full text link
    We consider the potential for line intensity mapping (LIM) of the rotational CO(1-0), CO(2-1) and CO(3-2) transitions to detect deviations from General Relativity from 0<z<30 < z < 3 within the framework of a very general class of modified gravity models, called Horndeski theories. Our forecast assumes a multi-tracer analysis separately obtaining information from the matter power spectrum and the first two multipoles of the redshift space distortion power spectrum. To achieve ±0.1\pm 0.1 level constraints on the slope of the kinetic gravity braiding and Planck mass evolution parameters, a mm-wave LIM experiment would need to accumulate ≈108−109\approx 10^8-10^9 spectrometer hours, feasible with instruments that could be deployed in the 2030s. Such a measurement would constrain large portions of the remaining parameter space available to Scalar-Tensor modified gravity theories. Our modeling code is publicly available.Comment: 13 pages, 5 figures; to be submitted to Monthly Notices of the Royal Astronomical Societ

    Report of the Topical Group on Cosmic Frontier 5 Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before for Snowmass 2021

    Full text link
    This report summarizes the envisioned research activities as gathered from the Snowmass 2021 CF5 working group concerning Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before. The scientific goals are to study inflation and to search for new physics through precision measurements of relic radiation from the early universe. The envisioned research activities for this decade (2025-35) are constructing and operating major facilities and developing critical enabling capabilities. The major facilities for this decade are the CMB-S4 project, a new Stage-V spectroscopic survey facility, and existing gravitational wave observatories. Enabling capabilities include aligning and investing in theory, computation and model building, and investing in new technologies needed for early universe studies in the following decade (2035+).Comment: contribution to Snowmass 202

    Characterization of MKIDs for CMB observation at 220 GHz with the South Pole Telescope

    Get PDF
    We present an updated design of the 220 GHz microwave kinetic inductance detector (MKID) pixel for SPT-3G+, the next-generation camera for the South Pole Telescope. We show results of the dark testing of a 63-pixel array with mean inductor quality factor Qi=4.8×105Q_i = 4.8 \times 10^5, aluminum inductor transition temperature Tc=1.19T_c = 1.19 K, and kinetic inductance fraction αk=0.32\alpha_k = 0.32. We optically characterize both the microstrip-coupled and CPW-coupled resonators, and find both have a spectral response close to prediction with an optical efficiency of η∼70%\eta \sim 70\%. However, we find slightly lower optical response on the lower edge of the band than predicted, with neighboring dark detectors showing more response in this region, though at level consistent with less than 5\% frequency shift relative to the optical detectors. The detectors show polarized response consistent with expectations, with a cross-polar response of ∼10%\sim 10\% for both detector orientations.Comment: 6 pages, 5 figures, ASC 2022 proceeding

    SuperSpec: On-chip spectrometer design, characterization, and performance

    Get PDF
    SuperSpec is an integrated, on-chip spectrometer for millimeter and sub-millimeter astronomy. SuperSpec is demonstrating a proof-of-principle multi-beam spectrometer on the sky at the Large Millimeter Telescope (LMT) in Mexico covering the 200 - 300 GHz frequency range with moderate resolution (R ~ 270 - 290). The dual-polarization, three-pixel instrument will consist of 6 SuperSpec spectrometer chips. We present the design and characterization of the devices being used in the first SuperSpec demonstration along with lab testing of the instrument performance

    Mapping Cosmic Dawn and Reionization: Challenges and Synergies

    Get PDF
    Cosmic dawn and the Epoch of Reionization (EoR) are among the least explored observational eras in cosmology: a time at which the first galaxies and supermassive black holes formed and reionized the cold, neutral Universe of the post-recombination era. With current instruments, only a handful of the brightest galaxies and quasars from that time are detectable as individual objects, due to their extreme distances. Fortunately, a multitude of multi-wavelength intensity mapping measurements, ranging from the redshifted 21 cm background in the radio to the unresolved X-ray background, contain a plethora of synergistic information about this elusive era. The coming decade will likely see direct detections of inhomogenous reionization with CMB and 21 cm observations, and a slew of other probes covering overlapping areas and complementary physical processes will provide crucial additional information and cross-validation. To maximize scientific discovery and return on investment, coordinated survey planning and joint data analysis should be a high priority, closely coupled to computational models and theoretical predictions.Comment: 5 pages, 1 figure, submitted to the Astro2020 Decadal Survey Science White Paper cal

    Cosmology with the Highly Redshifted 21cm Line

    Get PDF
    In addition to being a probe of Cosmic Dawn and Epoch of Reionization astrophysics, the 21cm line at z>6z>6 is also a powerful way to constrain cosmology. Its power derives from several unique capabilities. First, the 21cm line is sensitive to energy injections into the intergalactic medium at high redshifts. It also increases the number of measurable modes compared to existing cosmological probes by orders of magnitude. Many of these modes are on smaller scales than are accessible via the CMB, and moreover have the advantage of being firmly in the linear regime (making them easy to model theoretically). Finally, the 21cm line provides access to redshifts prior to the formation of luminous objects. Together, these features of 21cm cosmology at z>6z>6 provide multiple pathways toward precise cosmological constraints. These include the "marginalizing out" of astrophysical effects, the utilization of redshift space distortions, the breaking of CMB degeneracies, the identification of signatures of relative velocities between baryons and dark matter, and the discovery of unexpected signs of physics beyond the Λ\LambdaCDM paradigm at high redshifts.Comment: Science white paper submitted to Decadal 2020 surve
    • …
    corecore