78 research outputs found

    A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles : Evidence from Transcriptomics Studies

    Get PDF
    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) have attracted a great deal of attention due to their excellent electrical, optical, whitening, UV-adsorbing and bactericidal properties. The extensive production and utilization of these NPs increases their chances of being released into the environment and conferring unintended biological effects upon exposure. With the increasingly prevalent use of the omics technique, new data are burgeoning which provide a global view on the overall changes induced by exposures to NPs. In this review, we provide an account of the biological effects of ZnO and TiO2 NPs arising from transcriptomics in in vivo and in vitro studies. In addition to studies on humans and mice, we also describe findings on ecotoxicology-related species, such as Danio rerio (zebrafish), Caenorhabditis elegans (nematode) or Arabidopsis thaliana (thale cress). Based on evidence from transcriptomics studies, we discuss particle-induced biological effects, including cytotoxicity, developmental alterations and immune responses, that are dependent on both material-intrinsic and acquired/transformed properties. This review seeks to provide a holistic insight into the global changes induced by ZnO and TiO2 NPs pertinent to human and ecotoxicology.Peer reviewe

    A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies

    Get PDF
    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) have attracted a great deal of attention due to their excellent electrical, optical, whitening, UV-adsorbing and bactericidal properties. The extensive production and utilization of these NPs increases their chances of being released into the environment and conferring unintended biological effects upon exposure. With the increasingly prevalent use of the omics technique, new data are burgeoning which provide a global view on the overall changes induced by exposures to NPs. In this review, we provide an account of the biological effects of ZnO and TiO2 NPs arising from transcriptomics in in vivo and in vitro studies. In addition to studies on humans and mice, we also describe findings on ecotoxicology-related species, such as Danio rerio (zebrafish), Caenorhabditis elegans (nematode) or Arabidopsis thaliana (thale cress). Based on evidence from transcriptomics studies, we discuss particle-induced biological effects, including cytotoxicity, developmental alterations and immune responses, that are dependent on both material-intrinsic and acquired/transformed properties. This review seeks to provide a holistic insight into the global changes induced by ZnO and TiO2 NPs pertinent to human and ecotoxicology

    A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies

    Get PDF
    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) have attracted a great deal of attention due to their excellent electrical, optical, whitening, UV-adsorbing and bactericidal properties. The extensive production and utilization of these NPs increases their chances of being released into the environment and conferring unintended biological effects upon exposure. With the increasingly prevalent use of the omics technique, new data are burgeoning which provide a global view on the overall changes induced by exposures to NPs. In this review, we provide an account of the biological effects of ZnO and TiO2 NPs arising from transcriptomics in in vivo and in vitro studies. In addition to studies on humans and mice, we also describe findings on ecotoxicology-related species, such as Danio rerio (zebrafish), Caenorhabditis elegans (nematode) or Arabidopsis thaliana (thale cress). Based on evidence from transcriptomics studies, we discuss particle-induced biological effects, including cytotoxicity, developmental alterations and immune responses, that are dependent on both material-intrinsic and acquired/transformed properties. This review seeks to provide a holistic insight into the global changes induced by ZnO and TiO2 NPs pertinent to human and ecotoxicology

    Profiling Non-Coding RNA Changes Associated with 16 Different Engineered Nanomaterials in a Mouse Airway Exposure Model

    Get PDF
    Perturbations in cellular molecular events and their associated biological processes provide opportunities for hazard assessment based on toxicogenomic profiling. Long non-coding RNAs (lncRNAs) are transcribed from DNA but are typically not translated into full-length proteins. Via epigenetic regulation, they play important roles in organismal response to environmental stress. The effects of nanoparticles on this important part of the epigenome are understudied. In this study, we investigated changes in lncRNA associated with hazardous inhalatory exposure of mice to 16 engineered nanomaterials (ENM)-4 ENM (copper oxide, multi-walled carbon nanotubes, spherical titanium dioxide, and rod-like titanium dioxide particles) with 4 different surface chemistries (pristine, COOH, NH2, and PEG). Mice were exposed to 10 mu g of ENM by oropharyngeal aspiration for 4 consecutive days, followed by cytological analyses and transcriptomic characterization of whole lung tissues. The number of significantly altered non-coding RNA transcripts, suggestive of their degrees of toxicity, was different for each ENM type. Particle surface chemistry and shape also had varying effects on lncRNA expression. NH2 and PEG caused the strongest and weakest responses, respectively. Via correlational analyses to mRNA expression from the same samples, we could deduce that significantly altered lncRNAs are potential regulators of genes involved in mitotic cell division and DNA damage response. This study sheds more light on epigenetic mechanisms of ENM toxicity and also emphasizes the importance of the lncRNA superfamily as toxicogenomic markers of adverse ENM exposure.Peer reviewe

    Profiling Non-Coding RNA Changes Associated with 16 Different Engineered Nanomaterials in a Mouse Airway Exposure Model

    Get PDF
    Perturbations in cellular molecular events and their associated biological processes provide opportunities for hazard assessment based on toxicogenomic profiling. Long non-coding RNAs (lncRNAs) are transcribed from DNA but are typically not translated into full-length proteins. Via epigenetic regulation, they play important roles in organismal response to environmental stress. The effects of nanoparticles on this important part of the epigenome are understudied. In this study, we investigated changes in lncRNA associated with hazardous inhalatory exposure of mice to 16 engineered nanomaterials (ENM)–4 ENM (copper oxide, multi-walled carbon nanotubes, spherical titanium dioxide, and rod-like titanium dioxide particles) with 4 different surface chemistries (pristine, COOH, NH2, and PEG). Mice were exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by cytological analyses and transcriptomic characterization of whole lung tissues. The number of significantly altered non-coding RNA transcripts, suggestive of their degrees of toxicity, was different for each ENM type. Particle surface chemistry and shape also had varying effects on lncRNA expression. NH2 and PEG caused the strongest and weakest responses, respectively. Via correlational analyses to mRNA expression from the same samples, we could deduce that significantly altered lncRNAs are potential regulators of genes involved in mitotic cell division and DNA damage response. This study sheds more light on epigenetic mechanisms of ENM toxicity and also emphasizes the importance of the lncRNA superfamily as toxicogenomic markers of adverse ENM exposure

    Profiling Non-Coding RNA Changes Associated with 16 Different Engineered Nanomaterials in a Mouse Airway Exposure Model

    Get PDF
    Perturbations in cellular molecular events and their associated biological processes provide opportunities for hazard assessment based on toxicogenomic profiling. Long non-coding RNAs (lncRNAs) are transcribed from DNA but are typically not translated into full-length proteins. Via epigenetic regulation, they play important roles in organismal response to environmental stress. The effects of nanoparticles on this important part of the epigenome are understudied. In this study, we investigated changes in lncRNA associated with hazardous inhalatory exposure of mice to 16 engineered nanomaterials (ENM)–4 ENM (copper oxide, multi-walled carbon nanotubes, spherical titanium dioxide, and rod-like titanium dioxide particles) with 4 different surface chemistries (pristine, COOH, NH2, and PEG). Mice were exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by cytological analyses and transcriptomic characterization of whole lung tissues. The number of significantly altered non-coding RNA transcripts, suggestive of their degrees of toxicity, was different for each ENM type. Particle surface chemistry and shape also had varying effects on lncRNA expression. NH2 and PEG caused the strongest and weakest responses, respectively. Via correlational analyses to mRNA expression from the same samples, we could deduce that significantly altered lncRNAs are potential regulators of genes involved in mitotic cell division and DNA damage response. This study sheds more light on epigenetic mechanisms of ENM toxicity and also emphasizes the importance of the lncRNA superfamily as toxicogenomic markers of adverse ENM exposure

    A Randomized, Open-Label Trial of Hen's Egg Oral Immunotherapy : Efficacy and Humoral Immune Responses in 50 Children

    Get PDF
    BACKGROUND: Egg allergy is the second most common food allergy in children. Persistent food allergy increases the risk of anaphylaxis and reduces the quality of life. OBJECTIVE: To determine the efficacy of oral immunotherapy (OIT) with raw egg white powder and study its effects on humoral responses in children with persistent egg allergy. METHODS: Fifty children aged 6 to 17 years with egg allergy, diagnosed by double-blind, placebo-controlled food challenge, were randomized 3:2 to 8 months of OIT with a maintenance dose of 1 g of egg white protein or 6 months of avoidance after which the avoidance group crossed over to OIT. We examined changes in IgE, IgG4, and IgA concentrations to Gal d 1-4 during OIT compared with avoidance and assessed clinical reactivity at 8 and 18 months. RESULTS: After 8 months, 22 of 50 children (44%) on OIT and 1 of 21 (4.8%) on egg avoidance were desensitized to the target dose, 23 of 50 (46%) were partially desensitized (dosePeer reviewe

    Endotyping asthma related to 3 different work exposures

    Get PDF
    Background: Work exposures play a significant role in adult-onset asthma, but the mechanisms of work-related asthma are not fully elucidated. Objective: We aimed to reveal the molecular mechanisms of work-related asthma associated with exposure to flour (flour asthma), isocyanate (isocyanate asthma), or welding fumes (welding asthma) and identify potential biomarkers that distinguish these groups from each other. Methods: We used a combination of clinical tests, transcriptomic analysis, and associated pathway analyses to investigate the underlying disease mechanisms of the blood immune cells and the airway epithelium of 61 men. Results: Compared with the healthy controls, the welding asthma patients had more differentially expressed genes than the flour asthma and isocyanate asthma patients, both in the airway epithelia and in the blood immune cells. In the airway epithelia, active inflammation was detected only in welding asthma patients. In contrast, many differentially expressed genes were detected in blood cells in all 3 asthma groups. Disease-related immune functions in blood cells, including leukocyte migration and inflammatory responses, and decreased expression of upstream cytokines such as TNF and IFN-gamma were suppressed in all the asthma groups. In transcriptomephenotype correlations, hyperresponsiveness (R similar to vertical bar 0.6 vertical bar) had the highest clinical relevance and was associated with a set of exposure group-specific genes. Finally, biomarker subsets of only 5 genes specifically distinguished each of the asthma exposure groups. Conclusions: This study provides novel data on the molecular mechanisms underlying work-related asthma. We identified a set of 5 promising biomarkers in asthma related to flour, isocyanate, and welding fume exposure to be tested and clinically validated in future studies.Peer reviewe

    Oral exposure to Ag or TiO2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis : Ag or TiO2 nanoparticles in ulcerative colitis

    Get PDF
    Publisher Copyright: © 2022 The AuthorsSilver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.Peer reviewe

    Skin microbiota of oxazolone-induced contact hypersensitivity mouse model

    Get PDF
    Funding Information: K.M. received personal funding from Instrumentarium Science Foundation. The study was supported by grants from the Academy of Finland (decisions 307768 and 333178) admitted to P.K. and H.S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors wish to acknowledge Prof. Otso Ovaskainen for providing help with HMSC, and CSC–IT Center for Science, Finland, for computational resources. The DNA sequencing service was provided by the Institute of Molecular Medicine Finland (FIMM) at the Helsinki Institute of Life Science and Biocenter Finland at the University of Helsinki. Publisher Copyright: © 2022 Mäenpää et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Contact allergy is a common skin allergy, which can be studied utilising contact hypersensitivity (CHS) animal model. However, it is not clear, whether CHS is a suitable model to investigate skin microbiota interactions. We characterised the effect of contact dermatitis on the skin microbiota and studied the biological effects of oxazolone (OXA) -induced inflammation on skin thickness, immune cell numbers and changes of the microbiota in CHS mouse model (n = 72) for 28 days. Through 16S rRNA gene sequencing we defined the composition of bacterial communities and associations of bacteria with inflammation. We observed that the vehicle solution of acetone and olive oil induced bacterial community changes on day 1, and OXA-induced changes were observed mainly on day 7. Many of the notably enriched bacteria present in the OXA-challenged positive group represented the genus Faecalibaculum which were most likely derived from the cage environment. Additionally, skin inflammation correlated negatively with Streptococcus, which is considered a native skin bacterium, and positively with Muribacter muris, which is typical in oral environment. Skin inflammation favoured colonisation of cage-derived faecal bacteria, and additionally mouse grooming transferred oral bacteria on the skin. Due to the observed changes, we conclude that CHS model could be used for certain skin microbiome-related research set-ups. However, since vehicle exposure can alter the skin microbiome as such, future studies should include considerations such as careful control sampling and statistical tests to account for potential confounding factors.Peer reviewe
    • …
    corecore