42 research outputs found

    An effective simulation model to predict and optimize the performance of single and double glaze flat-plate solar collector designs

    Get PDF
    This paper outlines and formulates a compact and effective simulation model, which predicts the performance of single and double glaze flat-plate collector. The model uses an elaborated iterative simulation algorithm and provides the collector top losses, the glass covers temperatures, the collector absorber temperature, the collector fluid outlet temperature, the system efficiency, and the thermal gain for any operational and environmental conditions. It is a numerical approach based on simultaneous guesses for the three temperatures, Tp plate collector temperature and the temperatures of the two glass covers Tg1, Tg2. A set of energy balance equations is developed which allows for structured iteration modes whose results converge very fast and provide the values of any quantity which concerns the steady state performance profile of any flat-plate collector design. Comparison of the results obtained by this model for flat-plate collectors, single or double glaze, with those obtained by using the Klein formula, as well as the results provided by other researchers, is presented

    Degradation effects in sc-Si PV modules subjected to natural and induced ageing after several years of field operation

    Get PDF
    This paper presents ageing effects observed in sc-Si PV modules operating in field conditions for 18 and over 22 years. The effects of both natural ageing processes and induced ageing by external agents, causing partial or total shading of cells for a prolonged period of time, are examined. Optical degradation effects observed through visual inspection include discoloration of the EVA, degradation of the AR coating, degradation of the interface between the cell and encapsulant, corrosion of busbars and fingers, and tears, bubbles and humidity ingress at the back surface of the modules. Thermal degradation effects examined via IR thermography reveal the existence of hot cells, hotspots on the busbars, and colder bubbles. Modules' power and performance degradation is assessed through I-V curve analysis. Results show naturally aged modules to exhibit milder ageing effects than modules subjected to induced ageing, an outcome also supported by their power degradation ratio

    Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination

    Get PDF
    A theoretical and experimental analysis of PV module temperature under various environmental conditions is presented in relation to module inclination, wind velocity and direction. The present experimental study, makes use of hourly PV temperature data collected from a double-axis sun-tracking PV system and environmental parameters monitored for a period of one year. The f coefficient which relates the PV module temperature with the intensity of the global solar radiation on the PV plane and the ambient temperature, is assessed in relation to the angle of PV inclination, the wind velocity and the angle of incidence of the wind stream on the PV surface, either front or back. The f coefficient is evaluated both experimentally and theoretically through thermal modelling based on the energy balance equation. The simulation model developed in this study considers heat convection by natural and air forced flow, the flow pattern either laminar or turbulent, the relative geometry of the PV module with respect to the wind direction, and the radiated heat by the PV module. Various expressions for the forced heat convection coefficient available in the literature are tested within the thermal model with reference to the windward and leeward side of the PV module, and their applicability to PV thermal analysis is experimentally assessed in terms of the agreement shown with measured data. The values of the f coefficient provided by the simulation model lie very close to the experimental data for the entire range of PV inclination angles, wind velocities and wind directions tested

    On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    Get PDF
    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m2°C/W for free standing PV arrays at strong wind speeds, vW>7m/s, up to around 0.05 m2°C/W for the case of flexible PV modules which make part of the roof in a BIPV system

    Nanocrystalline TiO2 and halloysite clay mineral composite films prepared by sol-gel method:Synergistic effect and the case of silver modification to the photocatalytic degradation of basic blue- 41 azo dye in water

    Get PDF
    Tubular halloysite clay mineral and nanocrystalline TiO2 were incorporated in the preparation of nanocomposite films on glass substrates via sol-gel method at 450 °C. The synthesis involves a simple chemical method employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material and lead to the formation of TiO2 nanoparticles homogeneously distributed on the surface of the halloysite. Nanocomposite films without cracks of active anatase crystal phase and small crystallite size on halloysite nanotubes are characterized by microscopy techniques and porosimetry methods in order to examine their structural properties. The composite halloysite-TiO2 films with variable quantities of halloysite were examined as photocatalysts to the discoloration of Basic Blue 41 azo dye in water. These nanocomposite films proved to be very promising photocatalysts and highly effective to dye's discoloration in spite of small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. It also has been shown that the efficiency of the halloysite/TiO2 films could be further improved when silver particles were deposited on their surface after successful adsorption from an aqueous solution of a silver salt and UV reduction of the adsorbed ions

    Stochastic prediction of hourly global solar radiation profiles

    Get PDF
    A stochastic prediction model of the hourly profile of the I(h;nj) for any day nj at a site is outlined. It requires 1,2,or 3 measurements of the global solar radiation in a day nj, uses a D.B. and gives I(h;nj) for the rest hours. The model is validated against solar measurements. Conclusions are deducted for the predictive power of the model developed in MATLAB. It provides I(h;nj) profile predictions very close to the measured values and offers itself as a promising tool for a predictive on-line daily load management

    Transient and steady state simulation studies and experiments for the performance of c-Si and pc-Si PV cells in high illumination levels

    Get PDF
    A set of experiments was carried out to study the Voc, isc and the PV cell temperature time profile Tc(t) of a c-Si and a pc-Si cells. The analysis of the transient performance for Voc, isc and the cell temperature Tc(t) , vs time at different illumination levels was tried. A prediction model for the PV cell temperature, Tc, is developed and the results are compared with measured values. The same is tried for the prediction of Voc. The predicted Voc values by this model are compared to measured ones

    PV module temperature prediction at any environmental conditions and mounting configurations

    Get PDF
    Photovoltaic (PV) module temperature is known to significantly affect its power output and efficiency, while it has been shown to depend mainly on the ambient temperature, the solar irradiance incident on the PV plane and the wind speed, while to a lesser extent on the wind incidence angle and various other environmental parameters as well as PV module structural characteristics, module type, etc. The mounting configuration has been shown to play a significant role in the PV temperature developed and the power output. This paper presents an algorithmic approach for the prediction of PV module temperature at any environmental conditions based on the energy balance equation taking into account PV orientation, windward and leeward side, heat convection by natural and air forced flow, heat conduction and the radiated heat by the PV module. The results are compared to measured data under various outdoor conditions of ambient temperature, solar irradiance and wind speed. In addition, the predicted PV temperature is compared to predicted values from existing models. The robustness of the simulation algorithm developed in the prediction of PV module temperature is presented and its clear advantage over empirical models, which are fine tuned for the exact experimental conditions and/or experimental set ups under which they were developed, is illustrated. Furthermore, the coefficient f which relates the PV module temperature with the solar irradiance on the PV plane and the ambient temperature is examined for various configurations of free-standing fixed and sun-tracking PV system as well as building integrated photovoltaic (BIPV), illustrating essential differences in this and in the temperature developed in the PV module
    corecore