7 research outputs found

    Modelling and simulation for energy management of a hybrid microgrid with droop controller

    Get PDF
    The most efficient and connected alternative for increasing the use of local renewable energy sources is a hybrid microgrid, these systems face additional challenges due to the integration of power electronics, energy storage technologies and traditional power plants. The hybrid alternating current-direct current (AC-DC) microgrid that is the subject of this research uses a primary-droop control system to regulate state variables and auxiliary services, thus, it is composed of batteries, solar panels and a miniature wind turbine (PDC) and controls how each energy source in a microgrid contributes to the final product. To achieve the given objectives, this paper will create appropriate models for each part of the microgrid design and define, among them, the energy storage batteries and power electronic converters required for each level of each of these systems. Finally, the dynamic nature of the system will be critically evaluated and characterized, to distribute the load and reduce imbalances, modify the primary drop of the resulting microgrid using MATLAB simulation

    ModĂ©lisation de l’impĂ©dance de transfert d’un blindage Ă  deux Ă©crans

    Get PDF
      Dans cette communication, notre attention sera dirigĂ©e vers une propriĂ©tĂ© qui caractĂ©rise  les blindages dans les cĂąbles de transmission ; Ă  savoir l’impĂ©dance de transfert et plus particuliĂšrement Ă  la diffusion de la composante tangentielle du champ Ă©lectrique dans le matĂ©riau conducteur constituant le blindage. Cette composante sera notĂ©e ZT. Dans un premier temps, nous rappelons l’expression approchĂ©e de l’impĂ©dance de transfert d’un blindage homogĂšne Ă  un seul Ă©cran (enveloppe conductrice qui joue le rĂŽle de protection Ă©lectromagnĂ©tique). Nous prĂ©sentons comme travail celle d’un blindage Ă  deux Ă©crans; en tenant compte des arguments des fonctions de Bessel modifiĂ©es dans le cas de pertes diĂ©lectriques faibles

    ModĂ©lisation d’une Ligne de Transmission Multiconducteur par un Macro-model de PadĂ©

    Get PDF
    Dans ce papier  nous prĂ©sentons les caractĂ©ristiques gĂ©nĂ©rales d’un macro-model pour la modĂ©lisation des lignes de transmission multiconducteur (LTM) avec pertes. Cette mĂ©thode, qui est basĂ©e sur l’approximation de PadĂ©, permet  de reprĂ©senter une LTM sous forme d’un ‘macro modĂšle’. Elle peut ĂȘtre facilement intĂ©grĂ©e dans des simulateurs de type circuit SPICE ou ESACAP en utilisant la mĂ©thode MNA « Modified Nodal Analysis»

    Stirling engine optimization using artificial neural networks algorithm

    No full text
    Neural networks are a type of machine learning algorithm that are inspired by the structure and function of the human brain. They consist of layers of interconnected “neurons” which process and transmit information. Neural networks can learn to perform a variety of tasks by being trained on large datasets, and they have been successfully applied to a wide range of problems, including image and speech recognition, natural language processing (NLP), and predictive modeling. In this paper, we are combining Stirling engines with neural networks in order to improve the performance and efficiency of the engine by using machine learning to optimize their operation. For example, an optimizing neural network such as the Multi-Layer Perceptron (MLP) could be trained to predict the most efficient operating conditions for a Stirling engine based on design parameters such as displacer stroke, phase angle and working frequency. Additionally, neural networks could be used to diagnose and predict failures in Stirling engines, potentially improving their reliability and reducing maintenance costs
    corecore