36 research outputs found

    Early appropriate diagnostics and treatment of MDR Gram-negative infections

    Get PDF
    The term difficult-to-treat resistance has been recently coined to identify Gram-negative bacteria exhibiting resistance to all fluoroquinolones and all β-lactam categories, including carbapenems. Such bacteria are posing serious challenges to clinicians trying to identify the best therapeutic option for any given patient. Delayed appropriate therapy has been associated with worse outcomes including increase in length of stay, increase in total in-hospital costs and ∼20% increase in the risk of in-hospital mortality. In addition, time to appropriate antibiotic therapy has been shown to be an independent predictor of 30 day mortality in patients with resistant organisms. Improving and anticipating aetiological diagnosis through optimizing not only the identification of phenotypic resistance to antibiotic classes/agents, but also the identification of specific resistance mechanisms, would have a major impact on reducing the frequency and duration of inappropriate early antibiotic therapy. In light of these considerations, the present paper reviews the increasing need for rapid diagnosis of bacterial infections and efficient laboratory workflows to confirm diagnoses and facilitate prompt de-escalation to targeted therapy, in line with antimicrobial stewardship principles. Rapid diagnostic tests currently available and future perspectives for their use are discussed. Early appropriate diagnostics and treatment of MDR Gram-negative infections require a multidisciplinary approach that includes multiple different diagnostic methods and further consensus of algorithms, protocols and guidelines to select the optimal antibiotic therapy

    Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections

    Get PDF
    Multidrug-resistant (MDR) Gram-negative bacteria (GNB) pose a critical threat to global healthcare, worsening outcomes and increasing mortality among infected patients. Carbapenemase- and extended-spectrum β-lactamase-producing Enterobacterales, as well as carbapenemase-producing Pseudomonas and Acinetobacter spp., are common MDR pathogens. New antibiotics and combinations have been developed to address this threat. Clinical trial findings support several combinations, notably ceftazidime–avibactam (CZA, a cephalosporin-β-lactamase inhibitor combination), which is effective in treating complicated urinary tract infections (cUTI), complicated intra-abdominal infections and hospital-acquired and ventilator-associated pneumonia caused by GNBs. Other clinically effective combinations include meropenem–vaborbactam (MVB), ceftolozane–tazobactam (C/T) and imipenem–relebactam (I–R). Cefiderocol is a recent siderophore β-lactam antibiotic that is useful against cUTIs caused by carbapenem-resistant Enterobacterales (CRE) and is stable against many β-lactamases. Carbapenem-resistant Enterobacterales are a genetically heterogeneous group that vary in different world regions and are a substantial cause of infections, among which Klebsiella pneumoniae are the most common. Susceptible CRE infections can be treated with fluoroquinolones, aminoglycosides or fosfomycin, but alternatives include CZA, MVB, I–R, cefiderocol, tigecycline and eravacycline. Multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are increasingly common pathogens producing a range of different carbapenemases, and infections are challenging to treat, often requiring novel antibiotics or combinations. Currently, no single agent can treat all MDR-GNB infections, but new β-lactam–β-lactamase inhibitor combinations are often effective for different infection sites and, when used appropriately, have the potential to improve outcomes. This article reviews clinical studies investigating novel β-lactam approaches for treatment of MDR-GNB infections

    Baseline chest computed tomography as standard of care in high-risk hematology patients

    Get PDF
    Baseline chest computed tomography (BCT) in high-risk hematology patients allows for the early diagnosis of invasive pulmonary aspergillosis (IPA). The distribution of BCT implementation in hematology departments and impact on outcome is unknown. A web-based questionnaire was designed. International scientific bodies were invited. The estimated numbers of annually treated hematology patients, chest imaging timepoints and techniques, IPA rates, and follow-up imaging were assessed. In total, 142 physicians from 43 countries participated. The specialties included infectious diseases (n = 69; 49%), hematology (n = 68; 48%), and others (n = 41; 29%). BCT was performed in 57% (n = 54) of 92 hospitals. Upon the diagnosis of malignancy or admission, 48% and 24% performed BCT, respectively, and X-ray was performed in 48% and 69%, respectively. BCT was more often used in hematopoietic cell transplantation and in relapsed acute leukemia. European centers performed BCT in 59% and non-European centers in 53%. Median estimated IPA rate was 8% and did not differ between BCT (9%; IQR 5-15%) and non-BCT centers (7%; IQR 5-10%) (p = 0.69). Follow-up computed tomography (CT) for IPA was performed in 98% (n = 90) of centers. In high-risk hematology patients, baseline CT is becoming a standard-of-care. Chest X-ray, while inferior, is still widely used. Randomized, controlled trials are needed to investigate the impact of BCT on patient outcome

    International Epidemiology of Carbapenemase-Producing Escherichia coli

    Get PDF
    Background: Carbapenemase-producing (CP) Escherichia coli (CP-Ec) are a global public health threat. We aimed to describe the clinical and molecular epidemiology and outcomes of patients from several countries with CP-Ec isolates obtained from a prospective cohort. Methods: Patients with CP-Ec were enrolled from 26 hospitals in 6 countries. Clinical data were collected, and isolates underwent whole-genome sequencing. Clinical and molecular features and outcomes associated with isolates with or without metallo-β-lactamases (MBLs) were compared. The primary outcome was desirability of outcome ranking (DOOR) at 30 days after the index culture. Results: Of the 114 CP-Ec isolates in Consortium on resistance against carbapenems in Klebsiella and other Enterobacterales-2 (CRACKLE-2), 49 harbored an MBL, most commonly blaNDM-5 (38/49, 78%). Strong regional variations were noted with MBL-Ec predominantly found among patients in China (23/49). Clinically, MBL-Ec were more often from urine sources (49% vs 29%), less often met criteria for infection (39% vs 58%, P =. 04), and had lower acuity of illness when compared with non-MBL-Ec. Among patients with infection, the probability of a better DOOR outcome for a randomly selected patient with MBL-Ec as compared with non-MBL-Ec was 62% (95% CI: 48.2-74.3%). Among infected patients, non-MBL-Ec had increased 30-day (26% vs 0%; P =. 02) and 90-day (39% vs 0%; P =. 001) mortality compared with MBL-Ec. Conclusions: Emergence of CP-Ec was observed with important geographic variations. Bacterial characteristics, clinical presentations, and outcomes differed between MBL-Ec and non-MBL-Ec. Mortality was higher among non-MBL isolates, which were more frequently isolated from blood, but these findings may be confounded by regional variations

    Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study

    Get PDF
    Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a global threat. We therefore analysed the bacterial characteristics of CRKP infections and the clinical outcomes of patients with CRKP infections across different countries. Methods: In this prospective, multicentre, cohort study (CRACKLE-2), hospitalised patients with cultures positive for CRKP were recruited from 71 hospitals in Argentina, Australia, Chile, China, Colombia, Lebanon, Singapore, and the USA. The first culture positive for CRKP was included for each unique patient. Clinical data on post-hospitalisation death and readmission were collected from health records, and whole genome sequencing was done on all isolates. The primary outcome was a desirability of outcome ranking at 30 days after the index culture, and, along with bacterial characteristics and 30-day all-cause mortality (a key secondary outcome), was compared between patients from China, South America, and the USA. The desirability of outcome ranking was adjusted for location before admission, Charlson comorbidity index, age at culture, Pitt bacteremia score, and anatomical culture source through inverse probability weighting; mortality was adjusted for the same confounders, plus region where relevant, through multivariable logistic regression. This study is registered at ClinicalTrials.gov, NCT03646227, and is complete. Findings: Between June 13, 2017, and Nov 30, 2018, 991 patients were enrolled, of whom 502 (51%) met the criteria for CRKP infection and 489 (49%) had positive cultures that were considered colonisation. We observed little intra-country genetic variation in CRKP. Infected patients from the USA were more acutely ill than were patients from China or South America (median Pitt bacteremia score 3 [IQR 2–6] vs 2 [0–4] vs 2 [0–4]) and had more comorbidities (median Charlson comorbidity index 3 [IQR 2–5] vs 1 [0–3] vs 1 [0–2]). Adjusted desirability of outcome ranking outcomes were similar in infected patients from China (n=246), South America (n=109), and the USA (n=130); the estimates were 53% (95% CI 42–65) for China versus South America, 50% (41–61) for the USA versus China, and 53% (41–66) for the USA versus South America. In patients with CRKP infections, unadjusted 30-day mortality was lower in China (12%, 95% CI 8–16; 29 of 246) than in the USA (23%, 16–30; 30 of 130) and South America (28%, 20–37; 31 of 109). Adjusted 30-day all-cause mortality was higher in South America than in China (adjusted odds ratio [aOR] 4·82, 95% CI 2·22–10·50) and the USA (aOR 3·34, 1·50–7·47), with the mortality difference between the USA and China no longer being significant (aOR 1·44, 0·70–2·96). Interpretation: Global CRKP epidemics have important regional differences in patients’ baseline characteristics and clinical outcomes, and in bacterial characteristics. Research findings from one region might not be generalisable to other regions. Funding: The National Institutes of Health

    Baseline Chest Computed Tomography as Standard of Care in High-Risk Hematology Patients

    Get PDF
    Baseline chest computed tomography (BCT) in high-risk hematology patients allows for the early diagnosis of invasive pulmonary aspergillosis (IPA). The distribution of BCT implementation in hematology departments and impact on outcome is unknown. A web-based questionnaire was designed. International scientific bodies were invited. The estimated numbers of annually treated hematology patients, chest imaging timepoints and techniques, IPA rates, and follow-up imaging were assessed. In total, 142 physicians from 43 countries participated. The specialties included infectious diseases (n = 69; 49%), hematology (n = 68; 48%), and others (n = 41; 29%). BCT was performed in 57% (n = 54) of 92 hospitals. Upon the diagnosis of malignancy or admission, 48% and 24% performed BCT, respectively, and X-ray was performed in 48% and 69%, respectively. BCT was more often used in hematopoietic cell transplantation and in relapsed acute leukemia. European centers performed BCT in 59% and non-European centers in 53%. Median estimated IPA rate was 8% and did not differ between BCT (9%; IQR 5-15%) and non-BCT centers (7%; IQR 5-10%) (p = 0.69). Follow-up computed tomography (CT) for IPA was performed in 98% (n = 90) of centers. In high-risk hematology patients, baseline CT is becoming a standard-of-care. Chest X-ray, while inferior, is still widely used. Randomized, controlled trials are needed to investigate the impact of BCT on patient outcome

    Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): a prospective cohort study

    Get PDF
    Background: Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a global threat, but the distribution and clinical significance of carbapenemases are unclear. The aim of this study was to define characteristics and outcomes of CRPA infections and the global frequency and clinical impact of carbapenemases harboured by CRPA. Methods: We conducted an observational, prospective cohort study of CRPA isolated from bloodstream, respiratory, urine, or wound cultures of patients at 44 hospitals (10 countries) between Dec 1, 2018, and Nov 30, 2019. Clinical data were abstracted from health records and CRPA isolates were whole-genome sequenced. The primary outcome was 30-day mortality from the day the index culture was collected. We compared outcomes of patients with CRPA infections by infection type and across geographic regions and performed an inverse probability weighted analysis to assess the association between carbapenemase production and 30-day mortality. Findings: We enrolled 972 patients (USA n=527, China n=171, south and central America n=127, Middle East n=91, Australia and Singapore n=56), of whom 581 (60%) had CRPA infections. 30-day mortality differed by infection type (bloodstream 21 [30%] of 69, respiratory 69 [19%] of 358, wound nine [14%] of 66, urine six [7%] of 88; p=0·0012) and geographical region (Middle East 15 [29%] of 52, south and central America 20 [27%] of 73, USA 60 [19%] of 308, Australia and Singapore three [11%] of 28, China seven [6%] of 120; p=0·0002). Prevalence of carbapenemase genes among CRPA isolates also varied by region (south and central America 88 [69%] of 127, Australia and Singapore 32 [57%] of 56, China 54 [32%] of 171, Middle East 27 [30%] of 91, USA ten [2%] of 527; p<0·0001). KPC-2 (n=103 [49%]) and VIM-2 (n=75 [36%]) were the most common carbapenemases in 211 carbapenemase-producing isolates. After excluding USA patients, because few US isolates had carbapenemases, patients with carbapenemase-producing CRPA infections had higher 30-day mortality than those with non-carbapenemase-producing CRPA infections in both unadjusted (26 [22%] of 120 vs 19 [12%] of 153; difference 9%, 95% CI 3–16) and adjusted (difference 7%, 95% CI 1–14) analyses. Interpretation: The emergence of different carbapenemases among CRPA isolates in different geographical regions and the increased mortality associated with carbapenemase-producing CRPA infections highlight the therapeutic challenges posed by these organisms. Funding: National Institutes of Health

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Molecular characterisation of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella spp. isolates at a tertiary-care centre in Lebanon

    Get PDF
    AbstractThe prevalence of blaCTX-M, blaTEM and blaSHV genes among extended-spectrum β-lactamase (ESBL)-producing clinical isolates of Escherichia coli (n = 50) and Klebsiella spp. (n = 50) from Lebanon was 96%, 57% and 67%, and 40%, 82% and 84%, respectively. Genotyping revealed that the clonal diversity was unrelated to the presence of bla genes. Sequence analysis of 16 selected isolates identified the blaCTX-M-15, blaTEM-1, blaOXA-1 and six blaSHV genes, as well as the gene encoding the quinolone-modifying enzyme AAC(6′)-Ib-cr. The genes encoding CTX-M-15 and AAC(6′)-Ib-cr were carried on a 90-kb plasmid of the pC15–1a or pCTX-15 type, which transferred both ESBL production and quinolone resistance from donors to transconjugants
    corecore