62,905 research outputs found

    Optimal Estimates for the Electric Field in Two-Dimensions

    Get PDF
    The purpose of this paper is to set out optimal gradient estimates for solutions to the isotropic conductivity problem in the presence of adjacent conductivity inclusions as the distance between the inclusions goes to zero and their conductivities degenerate. This difficult question arises in the study of composite media. Frequently in composites, the inclusions are very closely spaced and may even touch. It is quite important from a practical point of view to know whether the electric field (the gradient of the potential) can be arbitrarily large as the inclusions get closer to each other or to the boundary of the background medium. In this paper, we establish both upper and lower bounds on the electric field in the case where two circular conductivity inclusions are very close but not touching. We also obtain such bounds when a circular inclusion is very close to the boundary of a circular domain which contains the inclusion. The novelty of these estimates, which improve and make complete our earlier results published in Math. Ann., is that they give an optimal information about the blow-up of the electric field as the conductivities of the inclusions degenerate.Comment: 26 page

    Weakly coupled s=1/2s = 1/2 quantum spin singlets in Ba3_{3}Cr2_{2}O8_{8}

    Full text link
    Using single crystal inelastic neutron scattering with and without application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba3_3Cr2_2O8_8. Even without field, we found that there exist three singlet-to-triplet excitation modes in (h,h,l)(h,h,l) scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr5+(3d1)^{5+} (3d^1). The strong intradimer coupling of J0=2.38(2)J_0 = 2.38(2) meV and weak interdimer interactions (∣Jinter∣≤0.52(2)|J_{\rm inter}| \leq 0.52(2) meV) makes Ba3_3Cr2_2O8_8 a good model system for weakly-coupled s=1/2s = 1/2 quantum spin dimers

    A new survivability measure for military communication networks

    Get PDF
    A new measure for survivability of military communication networks based upon topological structures is presented. The proposed measure can be used to evaluate and enhance the survivability of military communication networks, which is illustrated through case studies. The computer simulation results have shown that the new measure can well reflect the survivability of networks. It can be used as a reliable criterion for estimating the survivability of networks and designing networks with high survivability

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104−107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4−133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies ∼50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (Ms∼afewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005
    • …
    corecore