176 research outputs found

    A Novel Hypoxia Imaging Endoscopy System

    Get PDF
    Measurement of tumor hypoxia is required for the diagnosis of tumor and the evaluation of therapeutic outcome. Currently, invasive and noninvasive techniques being exploited for tumor hypoxia measurement include polarographic needle electrodes, immunohistochemical (IHC) staining, magnetic resonance imaging (MRI), radionuclide imaging (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]), optical imaging (bioluminescence and fluorescence), and hypoxia imaging endoscopy. This review provides a summary of the modalities available for assessment of tissue oxygenation as well as a discussion of current arguments for and against each modality, with a particular focus on noninvasive hypoxia imaging with emerging agents and new imaging technologies intended to detect molecular events associated with tumor hypoxia

    Cell regulation by phosphotyrosine-targeted ubiquitin ligases

    Get PDF
    Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology

    Phosphotyrosine recognition domains: The typical, the atypical and the versatile

    Get PDF
    SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling protein networks. However, over the years they have been joined by an increasing number of other protein domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as well as much smaller, or even single member fractions like the HYB domain, the PKC and PKC C2 domains and RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr recognition domains are used in a similarly wide range of interaction modes, which encompass, for example, partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases. © 2012 Kaneko et al.; licensee BioMed Central Ltd

    Phosphotyrosine recognition domains: the typical, the atypical and the versatile

    Full text link

    Differential regulation of the activity of deleted in liver cancer 1 (DLC1) by tensins controls cell migration and transformation

    Get PDF
    The epithelial growth factor receptor plays an important role in cell migration and cancer metastasis, but the underlying molecular mechanism is not fully understood. We show here that differential regulation of the rhodopsin-GTPase-activating (Rho-GAP) activity of deleted in liver cancer 1 (DLC1) by tensin3 and COOH-terminal tensin-like protein (cten) controls EGF-driven cell migration and transformation. Tensin3 binds DLC1 through its actin-binding domain, a region that is missing in cten, and thereby releases an autoinhibitory interaction between the sterile alpha motif and Rho-GAP domains of DLC1. Consequently, tensin3, but not cten, promotes the activation of DLC1, which, in turn, leads to inactivation of RhoA and decreased cell migration. Depletion of endogenous tensin3, but not cten, augmented the formation of actin stress fibers and focal adhesions and enhanced cell motility. These effects were, however, ablated by an inhibitor of the Rho-associated protein kinase. Importantly, activation of DLC1 by tensin3 or its actin-binding domain drastically reduced the anchorage-independent growth of transformed cells. Our study therefore links dynamic regulation of tensin family members by EGF to Rho-GAP through DLC1 and suggests that the tensin-DLC1-RhoA signaling axis plays an important role in tumorigenesis and cancer metastasis, and may be explored for cancer intervention

    Selective probe of the morphology and local vibrations at carbon nanoasperities

    Get PDF
    We introduce a way to selectively probe local vibration modes at nanostructured asperities such as tips of carbon nanohorns. Our observations benefit from signal amplification in surface-enhanced Raman scattering (SERS) at sites near a silver surface. We observe nanohorn tip vibration modes in the range 200-500 cm(-1), which are obscured in regular Raman spectra. Ab initio density functional calculations assign modes in this frequency range to local vibrations at the nanohorn cap resembling the radial breathing mode of fullerenes. Careful interpretation of our SERS spectra indicates presence of caps with 5 or 6 pentagons, which are chemically the most active sites. Changes in the peak intensities and frequencies with time indicate that exposure to laser irradiation may cause structural rearrangements at the cap.ArticleJOURNAL OF CHEMICAL PHYSICS. 136(6):064505 (2012)journal articl

    A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration

    Get PDF
    Although cell migration plays a central role in development and disease, the underlying molecular mechanism is not fully understood. Here we report that a phosphorylationmediated molecular switch comprising deleted in liver cancer 1(DLC1), tensin-3(TNS3), phosphatase and tensin homologue (PTEN) and phosphoinositide-3-kinase (PI3K) controls the spatiotemporal activation of the small GTPases, Rac1 and RhoA, thereby initiating directional cell migration induced by growth factors. On epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) stimulation, TNS3 and PTEN are phosphorylated at specific Thr residues, which trigger the rearrangement of the TNS3-DLC1 and PTEN-PI3K complexes into the TNS3-PI3K and PTEN-DLC1 complexes. Subsequently, the TNS3-PI3K complex translocates to the leading edge of a migrating cell to promote Rac1 activation, whereas PTEN-DLC1 translocates to the posterior for localized RhoA activation. Our work identifies a core signalling mechanism by which an external motility stimulus is coupled to the spatiotemporal activation of Rac1 and RhoA to drive directional cell migration

    Erratum: A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration

    Get PDF
    Although cell migration plays a central role in development and disease, the underlying molecular mechanism is not fully understood. Here we report that a phosphorylation-mediated molecular switch comprising deleted in liver cancer 1 (DLC1), tensin-3 (TNS3), phosphatase and tensin homologue (PTEN) and phosphoinositide-3-kinase (PI3K) controls the spatiotemporal activation of the small GTPases, Rac1 and RhoA, thereby initiating directional cell migration induced by growth factors. On epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) stimulation, TNS3 and PTEN are phosphorylated at specific Thr residues, which trigger the rearrangement of the TNS3–DLC1 and PTEN–PI3K complexes into the TNS3–PI3K and PTEN–DLC1 complexes. Subsequently, the TNS3–PI3K complex translocates to the leading edge of a migrating cell to promote Rac1 activation, whereas PTEN–DLC1 translocates to the posterior for localized RhoA activation. Our work identifies a core signalling mechanism by which an external motility stimulus is coupled to the spatiotemporal activation of Rac1 and RhoA to drive directional cell migration

    Dynamic interplay of two molecular switches enabled by the MEK1/2–ERK1/2 and IL-6–STAT3 signaling axes controls epithelial cell migration in response to growth factors

    Get PDF
    Cell migration is an essential physiological process, and aberrant migration of epithelial cells underlies many pathological conditions. However, the molecular mechanisms governing cell migration are not fully understood. We report here that growth factor–induced epithelial cell migration is critically dependent on the crosstalk of two molecular switches, namely phosphorylation switch (P-switch) and transcriptional switch (T-switch). P-switch refers to dynamic interactions of deleted in liver cancer 1 (DLC1) and PI3K with tensin-3 (TNS3), phosphatase and tensin homolog (PTEN), C-terminal tension, and vav guanine nucleotide exchange factor 2 (VAV2) that are dictated by mitogen-activated protein kinase kinase 1/2–extracellular signal–regulated protein kinase 1/2–dependent phosphorylation of TNS3, PTEN, and VAV2. Phosphorylation of TNS3 and PTEN on specific Thr residues led to the switch of DLC1–TNS3 and PI3K–PTEN complexes to DLC1–PTEN and PI3K–TNS3 complexes, whereas Ser phosphorylation of VAV2 promotes the transition of the PI3K–TNS3/PTEN complexes to PI3K–VAV2 complex. T-switch denotes an increase in C-terminal tension transcription/ expression regulated by both extracellular signal–regulated protein kinase 1/2 and signal transducer and activator of transcription 3 (STAT3) via interleukin-6–Janus kinase–STAT3 signaling pathway. We have found that, the P-switch is indispensable for both the initiation and continuation of cell migration induced by growth factors, whereas the T-switch is only required to sustain cell migration. The interplay of the two switches facilitated by the interleukin-6–Janus kinase–STAT3 pathway governs a sequence of dynamic protein–protein interactions for sustained cell migration. That a similar mechanism is employed by both normal and tumorigenic epithelial cells to drive their respective migration suggests that the P-switch and T-switch are general regulators of epithelial cell migration and potential therapeutic targets

    Surface loops in a single SH2 domain are capable of encoding the spectrum of specificity of the SH2 family

    Get PDF
    Src homology 2 (SH2) domains play an essential role in cellular signal transduction by binding to proteins phos-phorylated on Tyr residue. Although Tyr phosphorylation (pY) is a prerequisite for binding for essentially all SH2 domains characterized to date, different SH2 domains prefer specific sequence motifs C-terminal to the pY residue. Because all SH2 domains adopt the same structural fold, it is not well understood how different SH2 domains have acquired the ability to recognize distinct sequence motifs. We have shown previously that the EF and BG loops that connect the secondary structure elements on an SH2 domain dictate its specificity. In this study, we investigated if these surface loops could be engineered to encode diverse specificities. By characterizing a group of SH2 variants selected by different pY peptides from phage-displayed libraries, we show that the EF and BG loops of the Fyn SH2 domain can encode a wide spectrum of specificities, including all three major specificity classes (p 2, p 3 and p 4) of the SH2 domain family. Furthermore, we found that the specificity of a given variant correlates with the sequence feature of the bait peptide used for its isolation, suggesting that an SH2 domain may acquire specificity by co-evolving with its ligand. Intriguingly, we found that the SH2 variants can employ a variety of different mechanisms to confer the same specificity, suggesting the EF and BG loops are highly flexible and adaptable. Our work provides a plausible mechanism for the SH2 domain to acquire the wide spectrum of specificity observed in nature through loop variation with minimal disturbance to the SH2 fold. It is likely that similar mechanisms may have been employed by other modular interaction domains to generate diversity in specificity
    • …
    corecore