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Cell migration is an essential physiological process, and aber-
rant migration of epithelial cells underlies many pathological
conditions. However, the molecular mechanisms governing cell
migration are not fully understood. We report here that growth
factor–induced epithelial cell migration is critically dependent
on the crosstalk of two molecular switches, namely phosphory-
lation switch (P-switch) and transcriptional switch (T-switch). P-
switch refers to dynamic interactions of deleted in liver cancer 1
(DLC1) and PI3K with tensin-3 (TNS3), phosphatase and tensin
homolog (PTEN), C-terminal tension, and vav guanine nucleo-
tide exchange factor 2 (VAV2) that are dictated by mitogen-
activated protein kinase kinase 1/2–extracellular signal–
regulated protein kinase 1/2–dependent phosphorylation of
TNS3, PTEN, andVAV2. Phosphorylation ofTNS3 andPTENon
specific Thr residues led to the switch of DLC1–TNS3 andPI3K–
PTEN complexes to DLC1–PTEN and PI3K–TNS3 complexes,
whereas Ser phosphorylation of VAV2 promotes the transition of
the PI3K–TNS3/PTEN complexes to PI3K–VAV2 complex. T-
switch denotes an increase in C-terminal tension transcription/
expression regulated by both extracellular signal–regulated
protein kinase 1/2 and signal transducer and activator of tran-
scription 3 (STAT3) via interleukin-6–Janus kinase–STAT3
signaling pathway. We have found that, the P-switch is indis-
pensable for both the initiation and continuation of cell migra-
tion induced by growth factors, whereas the T-switch is only
required to sustain cell migration. The interplay of the two
switches facilitated by the interleukin-6–Janus kinase–STAT3
pathway governs a sequence of dynamic protein–protein in-
teractions for sustained cellmigration. That a similarmechanism
is employed by both normal and tumorigenic epithelial cells to
drive their respectivemigration suggests that the P-switch andT-
switch are general regulators of epithelial cell migration and
potential therapeutic targets.

Cell migration in response to motility cues provided by
growth factors (GFs), cytokines, or chemokines plays a critical
role in animal development, physiological processes such as

wound healing and immune response, and pathological con-
ditions such as cancer invasion and metastasis (1–4). Cell
migration involves the reorganization of the cytoskeleton, a
process that is controlled by the Rho family of small GTPases,
including RhoA, Rac1, and Cdc42 (5–7). The Rho GTPases, in
turn, are activated by guanine nucleotide exchange factors
(GEFs) that promote their binding to GTP (8, 9) and inacti-
vated by GTPase-activating proteins (GAPs) that catalyze the
hydrolysis of the bound GTP (10, 11). Understanding how GFs
regulate the activity of the Rho GTPases is of great importance
to decipher the mechanism of cell migration under physio-
logical and pathological conditions.

The MCF-10A human mammary epithelial cell line is a
widely used in vitro model to study the mechanism of cell
migration (12, 13). Binding of the epithelial growth factor
(EGF) to its receptor (epithelial growth factor receptor
[EGFR]) leads to activation of the Ras–mitogen-activated
protein kinase kinase 1/2 (MEK1/2)–extracellular signal–
regulated protein kinase 1/2 (ERK1/2) and the PI3K–AKT
signaling pathways essential for cell proliferation and survival
(14–17). We have found that components of the same
signaling pathways are also involved in regulating cell migra-
tion through a phosphorylation switch (called P-switch herein)
(13). The P-switch, in its original form, refers to the dynamic
interactions of deleted in liver cancer 1 (DLC1) and PI3K with
tensin-3 (TNS3) and phosphatase and tensin homolog (PTEN)
that are dictated by the phosphorylation status of the latter two
proteins (13). DLC1 is a Rho-specific GAP, whereas TNS3 is a
member of the tensin family of focal adhesion molecules; both
of which have been associated with cell migration. By cata-
lyzing the conversion of phosphatidylinositol (4,5)-diphos-
phate to phosphatidylinositol (3,4,5)-trisphosphate, PI3K plays
a critical role in Rac1 activation by facilitating the membrane
recruitment and activation of GEFs, including Tiam-1 and vav
guanine nucleotide exchange factor 2 (VAV2) (18) that contain
a pleckstrin homology domain (19). By converting phospha-
tidylinositol (3,4,5)-trisphosphate back to phosphatidylinositol
(4,5)-diphosphate, the tumor suppressor PTEN is believed to
play a negative role in cell migration (20). We have shown
previously that DLC1 binds to TNS3, whereas PI3K forms a* For correspondence: Shawn S.-C. Li, sli@uwo.ca.
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complex with PTEN in serum-starved MCF-10A cells. How-
ever, EGF stimulation activates the MEK1/2–ERK1/2 kinase
cascade, leading to TNS3 and PTEN phosphorylation on
specific Thr residues (i.e., TNS3–Thr323 and PTEN–Thr319)
(13). Remarkably, the phosphorylated PTEN (pPTEN) binds
preferentially to DLC1 rather than PI3K, whereas the phos-
phorylated TNS3 (pTNS3) associates with PI3K instead of
DLC1. Therefore, EGF promotes the DLC1–pPTEN and
PI3K–pTNS3 interactions at the expense of the DLC1–TNS3
and PI3K–PTEN complexes.

The binding partner switch for DLC1 and PI3K, which is
dependent on MEK1/2 activation, is necessary for the spatio-
temporal activation of RhoA and Rac1 conducive to cell
migration (13). In addition to having a Rho-specific GAP
domain, DLC1 contains an N-terminal sterile alpha motif
domain capable of binding to the GAP domain via an intra-
molecular interaction and thereby, keeping DLC1 in an inac-
tive conformation (21). However, this autoinhibition can be
relieved by TNS3 that binds to the DLC1 sterile alpha motif
domain through the actin-binding domain (ABD) for the
former (12, 13). Consequently, the DLC1–TNS3 interaction
activates the DLC1 RhoGAP domain, resulting in RhoA
inactivation. In contrast, the binding of PTEN to PI3K blocks
Rac1 activation by the latter. Therefore, the DLC1–TNS3 and
PI3K–PTEN complexes function, respectively, to keep the
cellular RhoA-GTP and Rac1-GTP levels in check in the
absence of a motility cue. However, following the activation of
the MEK1/2–ERK1/2 axis by EGF stimulation and the subse-
quent phosphorylation of TNS3 and PTEN, the DLC1–TNS3
and PI3K–PTEN complexes are replaced by the DLC1–
pPTEN and PI3K–pTNS3 complexes. Because PTEN does not
contain an ABD domain and TNS3 has no phosphatidylino-
sitol phosphatase activity, the phosphorylation-triggered
binding partner switch for DLC1 and PI3K results in the
spatiotemporal activation of RhoA and Rac1 required for cell
migration.

While the P-switch, which is activated within 30 min of EGF
stimulation, plays a pivotal role in initiating cell migration, its
role in sustaining migration remains to be elucidated. We and
others have shown that prolonged EGF treatment (>3 h),
which is required for sustained cell migration, leads to a
decrease in the transcript and protein levels for TNS3 and a
concomitant increase for C-terminal tension (CTEN), the
shorter isoform of TNS3 that lacks the ABD domain and is
thus unable to activate DLC1 (4, 12). However, it is not known
how the TNS3/CTEN transcriptional switch (i.e., the
T-switch) is regulated and how it interacts with the P-switch to
enable persistent cell migration in response to continuous GF
stimulation.

We show here that the P-switch and T-switch play indis-
pensable yet distinct roles in the migration of MCF-10A and
breast and lung cancer cells induced by a variety of different
GFs. We have identified signal transducer and activator of
transcription 3 (STAT3) as the regulator of the T-switch by
controlling CTEN transcription (22). Intriguingly, we have
found that both STAT3 and MEK1/2–ERK1/2 may regulate
the P-switch or the T-switch, depending on the duration of GF

stimulation. Although the two molecular switches control
discrete phases of cell migration that coincide with their ki-
netic activation patterns, they crosstalk with each other in a
highly interactive manner to ensure timely activation of RhoA
and Rac1 via DLC1 and PI3K and their binding partners. We
show that the preferred binding partner for PI3K is changed, in
a phosphorylation-dependent manner, from PTEN to TNS3
and then to VAV2 with time in cells under continuous GF
stimulation. In a parallel fashion, DLC1 is found to change
binding partners from TNS3, to PTEN and then CTEN, the
latter of which coinciding with increased CTEN expression
when the T-switch is activated by STAT3. Furthermore, we
have found that the interplay of the two switches is facilitated
by the interleukin-6 (IL-6)–STAT3–IL-6 feedback loop in
which both ERK1/2 and STAT3 play an important part as
transcription factor or cofactor for IL-6. Pharmacological in-
hibition of STAT3 or MEK1/2 significantly reduced or abol-
ished cell migration by disabling the T- and P-switches which,
in turn, disrupts the temporal activation pattern of RhoA and
Rac1. Taken together, our work has revealed the regulatory
mechanism of the P- and T-switches in GF-induced epithelial
cell migration and show how different signaling pathways may
be integrated to control the spatiotemporal activation of the
RhoA and Rac1 GTPases to initiate and sustain cell migration.

Results

EGF-induced epithelial cell migration is dependent on MEK1/
2–ERK1/2 and STAT3

Continuous treatment of epithelial cells with GFs or
persistent activation of Ras has been shown to activate both
MEK1/2 and STAT3, but with distinct kinetic patterns. While
the former is activated by transient treatment, the latter re-
quires hours of sustained stimulation (23). To characterize the
role of these dynamic signal outputs in cell migration, we
cultured MCF-10A cells with U1026, an inhibitor of MEK1/2,
the upstream kinase for ERK1/2, or with the STAT3 inhibitor
S3I-201 (13, 24). Both inhibitors abrogated EGF-induced cell
migration (Fig. 1A). Because the inhibitors had no significant
effect on cell viability under the same conditions as used in the
wound-healing assay (Fig. S1), this suggests that MEK1/2 and
STAT3 play an essential role in MCF-10A cell migration. To
find out if MEK1/2 or STAT3 plays a role in the T-switch, we
treated the cells with EGF for 8 h with or without the corre-
sponding inhibitor and determined, by Western blot (WB), the
dynamic changes in TNS3 and CTEN expression. EGF treat-
ment led to a marked decrease in the TNS3 and a concomitant
increase in the CTEN protein level. While neither inhibitor
had a significant impact on the reduction in the TNS3 level
caused by sustained EGF stimulation, both inhibitors abro-
gated the increase in CTEN under the same condition
(Fig. 1B). This suggests that both STAT3 and MEK1/2 may
regulate the T-switch through CTEN.

To define the underlying mechanism, we determined the
changes in TNS3, CTEN, STAT3, and ERK1/2 expression as
well as STAT3 and ERK1/2 phosphorylation in MCF-10A cells
treated with EGF for different durations. CTEN expression
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showed a noticeable increase in 3 h of EGF stimulation,
whereas TNS3 expression started to decrease in 60 min
(Fig. 1C) (4, 12), suggesting that the expression of the two
proteins is not coupled. Activation of ERK1/2 is controlled by
MEK1/2-mediated phosphorylation of Thr202 and Tyr204
within its kinase domain, whereas the activity of STAT3 is
regulated by the phosphorylation of Tyr705 at its C-terminal
tail (25, 26). Using phosphor-specific antibodies, we found that
ERK1/2 and STAT3–Y705 exhibited markedly different
phosphorylation dynamics. While the phosphorylation of both
proteins peaked in 10 min of EGF stimulation, the pERK1/2
level decreased slowly with continuous EGF treatment. In
contrast, the STAT3–pY705 level declined sharply in 30 min
and dropped below the basal level (i.e., when EGF was absent)
in 60 min. Curiously, STAT3–pY705 started to increase again
afterward and reached a new plateau in 3 h of continuous EGF
stimulation. Therefore, unlike ERK1/2, STAT3 went through

two waves of phosphorylation—the first within 30 min and the
second in 3 h of EGF stimulation. Importantly, the second
wave of STAT3–pTyr705 coincided with a marked increase in
the CTEN protein (Fig. 1C), suggesting STAT3 may regulate
cten expression. Indeed, chromatin immunoprecipitation
(ChIP)–quantitative PCR (qPCR) showed that, compared with
ERK1/2, significantly more STAT3 was found associated with
the cten promoter, with more robust binding detected at the
third hour compared with 10 min of EGF stimulation (Fig. 1D).
In contrast, neither STAT3 nor ERK1/2 bound the promoter
region of tns3 (Fig. S2), suggesting that tns3 transcription is
not regulated by either protein.

To determine if STAT3 and MEK1/2 crosstalk with each
other, we examined the effect of S3I-201 and U0126 on
STAT3–Tyr705 and ERK1/2 phosphorylation in a time course
of EGF treatment. As expected, S3I-201 effectively blocked
STAT3 phosphorylation, and U0126 abrogated ERK1/2

A C

B D

E F

Figure 1. MEK1/2–RK1/2 and STAT3 play indispensable, yet distinct roles in mammary epithelial cell migration. A, both the STAT3 inhibitor S3I-201
and the MEK1/2 inhibitor U0126 blocked migration of the MCF-10A cells induced by EGF. Shown are percentage of wound healing (in 16 h) in the presence
or the absence of EGF and/or the inhibitor. n = 3, **p < 0.001; Student’s t test. B, both S3I-201 and U0126 abrogated EGF-induced upregulation of CTEN
expression. Data shown are obtained from samples with 8 h of treatment. C, Western blot showing the dynamic changes in the TNS3 and CTEN protein
during 8 h of EGF treatment. Total and phosphorylated ERK1/2 and STAT3 were detected using specific antibodies. n = 3, *p < 0.05, **p < 0.001; Student’s t
test. D, distinct binding profiles for STAT3 and ERK1/2 to the cten gene promoter at different time points of EGF treatment, graphed from the corresponding
ChIP–PCR data. E, U0126 abrogated ERK1/2 phosphorylation at all time points but inhibited STAT3–Tyr705 phosphorylation only at late time points of EGF
stimulation (i.e., 3 and 8 h). F, S3I-201 blocked STAT3–Tyr705 phosphorylation but had no effect on ERK1/2 phosphorylation. ChIP, chromatin immuno-
precipitation; CTEN, C-terminal tension; EGF, epithelial growth factor; ERK1/2, extracellular signal–regulated protein kinase 1/2; MEK1/2, mitogen-activated
protein kinase kinase 1/2; STAT3, signal transducer and activator of transcription 3; TNS3, tensin-3.
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phosphorylation at all time points examined. Intriguingly, S3I-
201 had no effect on pERK1/2, whereas U0126 abolished
STAT3 phosphorylation at the later time points (e.g., 3 or 8 h;
Fig. 1, E and F) of EGF stimulation. These results suggest that
ERK1/2 regulates STAT3 activity at late time points of EGF
stimulation.

Dynamic evolvement of the P-switch in sustained cell
migration

We have previously shown that the P-switch is activated
within 30 min of EGF stimulation in MCF-10A. What happens
to the P-switch when the cells are continuously treated with
EGF as is required for sustained cell migration (Fig. S3)? To
address this question, we examined the interactions of DLC1
and PI3K with TNS3 and PTEN at discrete time points of EGF
treatment. Although DLC1 and PI3K exchanged binding
partners between time 0 and 30 min of EGF treatment, DLC1
reverted to TNS3-binding within 1 h and bound both TNS3
and PTEN in 2 h. In contrast, PI3K appeared to partition be-
tween TNS3 and PTEN following 1 h of EGF treatment. The
dynamic interactions for DLC1 and PI3K correlated with the
activation/inactivation pattern for RhoA and Rac1, respec-
tively. Specifically, the cellular RhoA-GTP level was dictated by
DLC1 and its binding partner, with PTEN promoting and

TNS3 impeding RhoA activation. In contrast, the Rac1 activity
was governed by PI3K and fine tuned by TNS3 and PTEN
binding in an opposite manner to RhoA (13) (Fig. 2A).
Correlated approximately with the ratio of the DLC1–PTEN/
DLC1–TNS3 complexes and the PI3K–TNS3/PI3K–PTEN
complexes, the RhoA-GTP and Rac1-GTP levels peaked in
30 min of EGF stimulation, dropped to their respective basal
levels (i.e., time 0) in 1 h but rose again to a level between the
basal and peak levels with continuous EGF treatment (Fig. 2A).

Because the P-switch is regulated by phosphorylation, we
used a pThr-specific antibody to monitor PTEN and TNS3
Thr phosphorylation at different time points of EGF stimula-
tion. We found that the phosphorylation of both PTEN and
TNS3 was markedly reduced, but not completely eliminated,
in the MCF-10A cells treated with EGF for more than 30 min
(Fig. 2B). It is noted that the level of TNS3 assessed by
immunoprecipitation (IP) did not change significantly likely
because of saturation of the anti-TNS3 antibody under the IP
condition. Nevertheless, phosphorylation was no longer
detectable for either protein in the presence of U0126
regardless of the length of EGF stimulation, suggesting that
MEK1/2 plays a pivotal role in the phosphorylation of PTEN
and TNS3. To substantiate this notion, we examined binding
of PI3K to TNS3 or PTEN in cells stimulated with EGF for
16 h. Prolonged treatment (e.g., ≥3 h) of the cells led to loss of

A

C

B

D

Figure 2. The dynamic and continuous evolvement of the P-switch depends on both MEK1/2 and STAT3. A, the P-switch within the first 3 h of EGF
stimulation in MCF-10A cells. Western blots showing that dynamic changes in binding partners for DLC1 and PI3K and RhoA and Rac1 activation in response
to EGF stimulation. B, U0126 blocked the Thr phosphorylation of PTEN and TNS3 induced by EGF at all the time points examined. C, U0126 abrogated the
dynamic interactions of PI3K with TNS3, PTEN, and VAV2 during continuous EGF treatment. The inhibitor also abrogated Ser phosphorylation of VAV2. D,
Western blot showing that the STAT3 inhibitor S3I-201 affected the P-switch by disabling the effect of EGF on CTEN expression. CTEN, C-terminal tension;
DLC1, deleted in liver cancer 1; EGF, epithelial growth factor; MEK1/2, mitogen-activated protein kinase kinase ½; P-switch, phosphorylation switch; PTEN,
phosphatase and tensin homolog; STAT3, signal transducer and activator of transcription 3; TNS3, tensin-3; VAV2, vav guanine nucleotide exchange factor 2.
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binding of PI3K to both PTEN and TNS3, suggesting that
other protein(s) may be involved in binding PI3K under the
condition. To identify the alternate binding partner(s) for PI3K
in the later phase of EGF treatment, we immunoprecipitated
PI3K (via the p85 subunit) from MCF-10A without EGF or
with EGF stimulation for 30 min or 8 h and identified the
bound proteins by mass spectrometry. While TNS3 was
detected in the PI3K IP at 30 min of EGF treatment as ex-
pected (Fig. 2, A and C), VAV2 was identified as one of the
most abundant proteins in the 8 h IP (Fig. S4), suggesting that
VAV2 is a binding partner for PI3K. Subsequent WB experi-
ments not only confirmed the PI3K–VAV2 interaction but
also revealed its dynamic nature. Specifically, markedly more
VAV2 was immunoprecipitated with PI3K in cells treated with
EGF for 3 h or longer when the TNS3/PTEN–PI3K interaction
was lost or drastically reduced (Fig. 2C). Furthermore, VAV2
was Ser-phosphorylated by MEK1/2 as U0126 abrogated
VAV2 phosphorylation and markedly reduced its binding to
the PI3K (Fig. 2C). Therefore, the PI3K arm of the P-switch,
which controls Rac1 activity, is comprised of a series of dy-
namic protein–protein interactions such that PI3K changes
binding partner from PTEN to pTNS3 and then to pVAV2
with continuous EGF stimulation. Importantly, the Thr/Ser
phosphorylation of PTEN, TNS3, and VAV2 and their dy-
namic interactions with PI3K were abolished by U0126, indi-
cating a pivotal role for MEK1/2 in regulating the P-switch
(Fig. 2C).

Contrary to U0126, the STAT3 inhibitor S3I-201 did not
affect the dynamic interactions of PI3K and DLC1 with PTEN
and TNS3. However, at the third hour of EGF stimulation
when CTEN expression started to increase, DLC1 was found to
bind CTEN in addition to TNS3 and PTEN. At the eighth and
16th hour, when the cellular CTEN level was further increased,
the DLC1–CTEN interaction became dominant, apparently at
the expense of the DLC1–TNS3 complex. Intriguingly, the
DLC1–PTEN interaction remained essentially unchanged at
these time points. Therefore, the DLC1 arm of the P-switch,
which controls RhoA activity, undergoes at least four distinct
phases during continuous EGF stimulation. The first phase,
occurring from 0 to 30 min of EGF stimulation, is characterized
by the switch of binding partner for DLC1 from TNS3 to
PTEN. The second phase, occurring between 0.5 and 1 h,
DLC1 is found predominantly in a complex with TNS3. In the
third phase, from 1 h to approximately 3 h of EGF treatment,
DLC1 partitions between TNS3 and PTEN. And in the final
phase, starting approximately at the third hour, DLC1 is
engaged in binding TNS3, PTEN, and CTEN simultaneously.
Nevertheless, the DLC1–CTEN complex becomes more pre-
dominant with time accompanied by increased CTEN expres-
sion. S3I-201 affected specifically phase 4 of the DLC1 arm and
had no effect on the PI3K arm of the P-switch (Fig. 2D).

Crosstalk between the P- and T-switches is mediated by the IL-
6–STAT3 signaling axis

Because EGF stimulation can trigger IL-6 release in an
autocrine fashion or a paracrine fashion (23, 27–29), we

wondered if IL-6 would play a role in promoting cell migration
through the IL-6– Janus kinase 1/2 (JAK1/2)–STAT3 signaling
pathway. In support of this possibility, we found that the IL-6
mRNA increased significantly between 3 and 8 h of EGF
stimulation in MCF-10A (Fig. S5A). The same dynamic
pattern of IL-6 expression was observed in the MDA-MB-231
breast cancer cells under continuous platelet-derived growth
factor (PDGF) treatment (Fig. S5B). To find out if IL-6 could
promote cell migration, we added recombinant IL-6 to the
MCF-10A cell culture with or without EGF. While IL-6 alone
had no effect on the cell migration (Fig. S6A), it synergized
with EGF to promote cell migration when the two were
applied together. Conversely, the addition of an IL-6 antibody
reduced the promoting effect of EGF on cell migration
(Fig. 3A). Because serum-starved cells were used to measure
migration, the contribution of cell proliferation to migration in
the wound-healing assay was negligible (Fig. S6B). The same
synergistic effect between IL-6 and PDGF was observed on the
MDA-MB-231 cells (Fig. S7). Moreover, the speed of wound
healing increased with time during continuous EGF treatment
(Fig. S8) likely because of IL-6 accumulation in the medium
via the IL-6–JAK1/2–STAT3–IL-6 feedback loop (22). These
results indicate that IL-6 can promote cell migration together
with EGF. To determine if IL-6 indeed exerts its effect through
STAT3, we immunoblotted for STAT3–pY705 in cells treated
with recombinant IL-6 or the anti-IL-6 antibody and found
that the former promoted, whereas the latter inhibited STAT3
phosphorylation. In contrast, neither IL-6 nor the anti-IL-6
antibody affected ERK1/2 phosphorylation (Fig. 3, B and C).

STAT3 phosphorylation within the first 30 min of EGF
stimulation is likely mediated by the EGFR and the associated
JAK1/2 or Src kinases (30). To confirm this prediction, we
incubated MCF-10A with the corresponding kinase inhibitors.
Pharmacological inhibition of the EGFR, JAK1/2, or Src led to
a significant reduction or complete blockade of EGF-induced
cell migration (Fig. S9). Mechanistically, we found that
blocking the EGFR or JAK with the corresponding inhibitor
EGFRi or JAKi decreased the STAT3–Y705 phosphorylation
while the combination of the two inhibitors abolished the
phosphorylation (Fig. 3D). Although the JAKi markedly
reduced STAT3 phosphorylation, it had no effect on ERK1/2
(Fig. 3D and Fig. S10), suggesting that the inhibitory effect of
the JAKi on cell migration was exerted through STAT3.
Similarly, the Src kinase inhibitor Src-I completely blocked
STAT3 phosphorylation but had no effect on pERK1/2
(Fig. 3E). Furthermore, all the kinase inhibitors and the anti-
IL-6 antibody decreased CTEN expression induced by EGF
(Fig. 3F). Together, these data suggest that the EGFR–JAK–
STAT3, EGFR–Src–STAT3, and IL-6–JAK–STAT3 signaling
pathways converge on STAT3 to promote CTEN expression.
Consequently, blocking these signaling pathways stalled EGF-
induced cell migration by disabling the upregulation of CTEN.

The dynamic expression of IL-6 may be directly regulated by
STAT3 and ERK1/2, both of which may function as tran-
scription factor or cofactor (31). To explore this notion, we
determined, via cell fractionation followed by WB, nuclear
STAT3 and ERK1/2 in EGF-treated MCF-10A cells. Similar to
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the dynamic profile of STAT3–pY705, STAT3 was detected in
the nucleus at the highest level in 10 min of EGF stimulation
but at lower levels in samples taken in 30 min, 3 h, and 8 h, and
was undetectable at 1 h. In contrast, ERK1/2 phosphorylation
and nuclear localization peaked in 10 min and decreased to a

lower level afterward (Fig. 3G). Moreover, STAT3 was found
to bind robustly to the IL-6 promoter following 3 h of EGF
treatment when the IL-6 mRNA level started to rise. Intrigu-
ingly, significantly more ERK1/2 was found associated with the
IL-6 promoter than STAT3 in 10 min (Fig. 3H). These data

A

D

G

I

H

E F

B C

Figure 3. The IL-6–STAT3–IL-6 feedback loop facilitates cell migration in response to continuous EGF treatment. A, IL-6 promoted EGF stimulated cell
migration, whereas an anti-IL-6 antibody (αIL-6) significantly reduced cell migration. n = 3, *p < 0.05, Student’s t test. B, IL-6 promoted STAT3–Y705
phosphorylation but had no effect on ERK1/2 phosphorylation. C, αIL-6 markedly reduced STAT3 phosphorylation but had no effect on ERK1/2 activation
induced by EGF stimulation for 3 h. D and E, pharmacological inhibition of the EGFR, JAK, and Src kinases reduced or blocked STAT3 phosphorylation. F,
relevant kinase inhibitors and anti-IL-6 antibody all decreased CTEN expression induced by EGF. G, nuclear translocation of STAT3 (STAT3-pY705) and ERK1/
2 (pERK1/2) during continuous EGF stimulation. H, IL-6 transcription was regulated by ERK1/2 in the early phase (e.g., 10 min), but by STAT3 in the later
phase (e.g., 3 h) of EGF stimulation. n = 3, *p < 0.05; **p < 0.001, Student’s t test. I, both S3I-201 and U0126 effectively blocked EGF-induced IL-6 expression
in MCF-10A cells. EGF, epithelial growth factor; EGFR, epithelial growth factor receptor; ERK1/2, extracellular signal–regulated protein kinase 1/2; IL-6,
interleukin-6; JAK, Janus kinase; STAT3, signal transducer and activator of transcription 3.
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suggest that IL-6 transcription is controlled primarily by
ERK1/2 in the early phase (<3 h) but by STAT3 in the late
phase (>3 h) of EGF-induced cell migration. In agreement
with this assertion, both S3I-201 and U0126 blocked IL-6
transcription induced by EGF. Intriguingly, U0126 inhibited
IL-6 transcription more strongly than S3I-201 in cells incu-
bated with EGF for 30 min or longer (Fig. 3I).

STAT3 and MEK1/2 play distinct roles in RhoA and Rac1
activation and reorganization of the actin cytoskeleton

Because cell migration is dependent on the dynamic acti-
vation of the Rho family of small GTPases, we determined the
RhoA-GTP and Rac1-GTP levels in cells treated with EGF for
different durations. Although the total cellular level of RhoA or
Rac1 did not change significantly with time, the RhoA-GTP or
Rac1-GTP levels underwent large dynamic shifts. Within the
first hour of EGF stimulation, the activation or inactivation of
RhoA and Rac1 correlated with the “on” or “off” states of the
P-switch—that is, the highest RhoA-GTP and Rac1-GTP levels
were detected in MCF-10A cells stimulated with EGF for
30 min when the DLC1–PTEN and PI3K–TNS3 complexes
were formed, and the lowest (basal) levels were observed in 1 h
when the DLC1–TNS3 and PI3K–PTEN complexes were
detected (Figs. 2 and 4). Intriguingly, the activities of RhoA and
Rac1 were markedly higher than their corresponding basal
levels at later time points (e.g., at the third, eighth, and 16th
hour). The role of MEK1/2 and STAT3 on the dynamic acti-
vation/inactivation of RhoA and Rac1 was interrogated using
U0126 and S3I-201. Treatment of the cells with U0126
completely abolished RhoA and Rac1 activation at all time
points (Fig. 4A), consistent with an essential role for MEK1/2–
ERK1/2 in EGF-driven cell migration. In contrast, S3I-201 had
no effect on Rac1 activation, yet it reduced RhoA activation at
later time points (e.g., at the third, eighth, and 16th hour) of

EGF stimulation. This latter observation agrees with the
increased CTEN expression in response to prolonged (>3 h)
EGF stimulation (Fig. 2D). Apparently, the resulting DLC1–
CTEN interaction (Fig. 2D) promotes RhoA activation by
maintaining DLC1 RhoGAP in an autoinhibited state (12). On
the other hand, we predicted that the enhanced interaction of
VAV2 with PI3K at the same time points would contribute to
Rac1 activation. Indeed, depletion of VAV2 by siRNA signifi-
cantly reduced cell migration (Fig. S11), decreased the Rac1-
GTP level in cells stimulated with EGF for 3, 8, or 16 h, but
had no impact on RhoA activation (Fig. 4C). These data are
consistent with our earlier observation that the PI3K–VAV2
interaction was augmented by continuous EGF treatment
(Fig. 2C).

The distinct roles of the MEK1/2 and STAT3 inhibitors on
RhoA and Rac1 activity were manifested in their different ef-
fects on F-actin and focal adhesion dynamics. EGF stimulation
of the MCF-10A cells induced large dynamic changes in the
actin cytoskeleton that correlated with the RhoA and Rac1
activation status. Specifically, an extensive network of actin
stress fibers and focal adhesions were formed in cells stimu-
lated with EGF for 30 min when the RhoA-GTP and Rac-GTP
levels were at the highest. In contrast, actin filament and focal
adhesion were greatly attenuated in cells treated with EGF for
1 h when the P-switch was off and RhoA-GTP and Rac-GTP
were at their lowest levels (Fig. 5 and Fig. S12). However, the
F-actin and focal adhesion network returned to a moderate
level at the third hour and became more prominent at the
eighth hour, which again, are consistent with the correspond-
ing RhoA and Rac1 activity (Fig. 4). Compared with the vehicle
(dimethyl sulfoxide) control, S3I-201 had no apparent effect on
formation of actin filament and focal adhesion in cells in the
early phase of EGF stimulation (e.g., 30 min). However, for the
later time points (i.e., from the third hour and onward), the

A

C

B

Figure 4. Dynamic RhoA and Rac1 activation is required to sustain EGF-induced epithelial cell migration. A, U0126 eliminated both RhoA and Rac1
activation in EGF-stimulated MCF-10A cells. B, S3I-201 reduced RhoA activity at later time points (>3 h) of EGF treatment but had no significant effect on
Rac1 activity. C, VAV2 is required for Rac1 activation at later time points (>3 h) of EGF treatment. Numbers are signal intensities relative to the first lane in
each Western blot. EGF, epithelial growth factor; PD, pull down; VAV2, vav guanine nucleotide exchange factor 2.
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S3I-201–treated cells displayed a drastic defect in the formation
of actin stressfibers. In contrast,U0126 treatment led to amarked
reduction in actin stress fiber and focal adhesions throughout the
course of EGF treatment (Fig. 5 and Figs. S12–S14).

The T-switch and P-switch control epithelial cancer cell
migration

The tumor microenvironment (TME) is enriched with cy-
tokines (such as IL-6) and GFs that may promote their
migration and eventual metastasis to a distal site. To investi-
gate if the same mechanism that we have identified for MCF-
10A also regulates the migration of epithelial cancer cells, we
extended our study to MDA-MB-231, a highly metastatic
breast cancer line and HCC-78, a non–small cell lung cancer
line (32, 33). We found that the PDGF and the hepatocyte
growth factor (HGF) significantly promoted the migration of
MDA-MB-231 and HCC-78, respectively. Similar to what was

shown for EGF-treated MCF-10A cells, the stimulatory effect
of PDGF/HGF on the cancer cells was markedly diminished or
eliminated by S3I-201 or U0126 (Fig. 6, A and B). Prolonged
treatment of the cancer cells with PDGF/HGF caused a drastic
increase in IL-6 expression, which, however, was abolished by
the STAT3 or MEK1/2 inhibitor (Fig. S15), suggesting that the
IL-6–STAT3–IL-6 amplification loop plays an important role
in the migration of MDA-MB-231 or HCC-78. Accordingly,
we found that CTEN expression was increased, whereas TNS3
decreased by PDGF/HGF in the cancer cells. Similar to earlier
observations, the GF-induced increase in CTEN expression
was largely abolished by S3I-201 and U0126 (Fig. 6C).

Similar to what was observed in MCF-10A, GF treatment
led to dynamic protein–protein interactions associated with
the P-switch in the cancer cells. Specifically, the changing of
binding partners for DLC1 from TNS3 to PTEN and back to
TNS3 occurred in the first hour of PDGF stimulation in

A

B

Figure 5. Distinct effects of STAT3 or MEK1/2 inhibition on the dynamic formation of actin stress fiber and focal adhesions during EGF-induced
epithelial cell migration. A, representative confocal immunofluorescence images taken of MCF-10A cells at the indicated time points of EGF stimulation in
the absence or the presence of S3I-201 or U0126. Red, rhodamine phalloidin for actin; green, paxillin for focal adhesion; and blue, Hoechst for nuclei. The
scale bar represents 10 μm. B, a bar graph showing the percentage of cells displaying migratory characteristics (i.e., actin assembly at the leading edge) at
the indicated time points of EGF stimulation in the absence or the presence of the inhibitors or vehicle (DMSO). Error bars correspond to standard deviation,
n = 3. DMSO, dimethyl sulfoxide; EGF, epithelial growth factor; MEK1/2, mitogen-activated protein kinase kinase 1/2; STAT3, signal transducer and activator
of transcription 3.
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MDA-MB-231. This early phase of the P-switch was insensitive
to STAT3 inhibition by S3I-201. Nevertheless, the DLC1–CTEN
interaction, which occurred in 3 h of PDGF treatment, was
reduced by the inhibitor as was the RhoA-GTP level. Similar to
earlier findings, S3I-201 only affected Rac1-GTP in cells under
PDGF treatment for 3 h or longer (Fig. 6D). Collectively, these
data suggest that the P-switch and T-switch are common
mechanisms employed by nontumorigenic and tumorigenic
epithelial cells to control their migration in response to a variety
of different GFs, including EGF, HGF, and PDGF.

Discussion

Our main finding from this study is that GF-induced
migration of epithelial cells, including both mammary gland–
derived epithelial cells and certain breast and lung cancer cells,
involves a continuum of dynamic protein–protein interactions
that are regulated at both the transcriptional (e.g., via the T-
switch) and the post-translational (e.g., via the P-switch) levels.
As depicted in Figure 7, epithelial cell migration may be
arbitrarily divided into two phases—an early phase and a late
phase—depending on the length of GF stimulation. For the
cells examined herein, the transition from the early to late
phase occurred in approximately 3 h of GF stimulation. We

have shown that cell migration within the first 3 h is controlled
primarily by the P-switch. GF binding to the corresponding
receptor tyrosine kinase (RTK) activates the Ras–Raf–MEK1/
2–ERK1/2 signaling cascade. This then leads to MEK1/2-
dependent phosphorylation of PTEN and TNS3, resulting in
binding-partner exchange for DLC1 and PI3K. Formation of
the DLC1–pPTEN and PI3K–pTNS3 complexes within
30 min of GF stimulation is critical for RhoA and Rac1 acti-
vation to initiate migration. In addition to activating the P-
switch, MEK1/2 also phosphorylates and activates ERK1/2.
The phosphorylated ERK1/2, once entering the nucleus, can
regulate IL-6 expression. Thus, the MEK1/2–ERK1/2 kinase
axis plays a pivotal role not only in the P-switch but also in the
transition from the P-switch to the T-switch. With regard to
the latter, the ERK1/2-dependent expression of IL-6 plays a
critical role in the T-switch as IL-6 can activate STAT3 via the
IL6R/gp130–JAK–STAT3 signaling pathway in an autocrine
fashion or a paracrine fashion. STAT3, upon pTyr705-
mediated dimerization, translocates to the nucleus to further
enhance IL-6 transcription, setting off the IL-6–STAT3–IL-6
amplification loop. Meanwhile, nuclear STAT3 may function
as a transcription factor for cten and promote CTEN expres-
sion. Consequently, the RhoA arm of the P-switch is domi-
nated by the DLC1–CTEN interaction during the second

A

D

B C

Figure 6. MEK1/2 and STAT3 regulate the T- and P-switches to control growth factor–induced migration of MDA-231 and HCC-78 cells. A, S3I-201
and U0126 blocked PDGF-induced MDA-MB-231 cell migration. n = 3, **p < 0.001; Student’s t test. B, both inhibitors blocked the HGF-induced HCC-78 cell
migration. n = 3, **p < 0.001; Student’s t test. C, both S3I-201 and U0126 abrogated the TNS3 to CTEN transcriptional switch induced by PDGF in MDA-MB-
231 and HGF in HCC-78. Data shown were obtained from cells collected after 8 h of growth factor treatment. D, coimmunoprecipitation and Western blot
showed that STAT3 activation was required for DLC1 binding to CTEN in response to prolonged (e.g., >3 h) PDGF treatment of MDA-MB-231 cells. CTEN,
C-terminal tension; DLC1, deleted in liver cancer 1; HGF, hepatocyte growth factor; MEK1/2, mitogen-activated protein kinase kinase 1/2; P-switch,
phosphorylation switch; PDGF, platelet-derived growth factor; STAT3, signal transducer and activator of transcription 3; T-switch, transcriptional switch;
TNS3, tensin-3.
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phase of GF-induced epithelial cell migration. Unlike TNS3,
CTEN is incapable of activating the RhoGAP domain in DLC1.
Therefore, the DLC1–CTEN complex functions to maintain a
high level of RhoA-GTP in the cell. In contrast, the Rac1 aim
of the P-switch in the second phase is dominated by PI3K
binding to VAV2, a pleckstrin homology domain–containing
GEF for Rac1. Intriguingly, the PI3K–VAV2 interaction was
greatly enhanced by Ser phosphorylation of the latter, which is
likely mediated by MEK1/2 as U0126 completely blocked
VAV2 phosphorylation. Therefore, the MEK1/2–ERK1/2 and
IL-6–STAT3 axes interact with each other throughout the
course of GF stimulation to control the dynamic binding
partner switch for DLC1 and PI3K, and thereby fine tuning the
spatiotemporal activation of RhoA and Rac1 required for the
initiation and continuation of cell migration.

Because the migration of tumorigenic epithelial cells may
also be regulated by the same signaling pathways and the
associated molecular switches, our work may be relevant to
understand the molecular basis of cancer invasion and
metastasis. GFs, such as EGF, PDGF, HGF, and vascular
endothelial growth factor, which may be produced by the tu-
mor cells or by other cells in the TME, have been implicated in
promoting cancer metastasis (34–37). We have shown that

both PDGF-induced MDA-MB-231 and HGF-induced HCC-
78 cell migration are dependent on MEK1/2 and STAT3.
What distinguishes physiological from pathological cell
migration may not be the underlying signaling pathways but
the specific GFs that trigger cell migration. For example, we
found that EGF, but not PDGF, promoted the MCF-10A cell
migration. In contrast, PDGF, but not EGF, effectively induced
MDA-MB-231 migration. Compared with the nontumorigenic
counterpart, the cancer cells may have altered profiles of RTK
expression to better allow them to interact with the TME,
including tumor-associated fibroblasts and tumor-infiltrating
leukocytes, and respond favorably to GFs or cytokines pro-
duced in the TME.

Our work provides a potential mechanism by which can-
cer cells may interact with cells in the TME to facilitate
metastasis through the IL-6/JAK/STAT3 or more generally,
the cytokine–JAK–STAT3 signaling pathway. Indeed, IL-6
has been identified as an important mediator of metastasis
in breast cancer (38, 39), gastric cancer (40), and colorectal
cancer (29, 41). Because STAT3 may be activated by a
number of cytokines via the JAK–STAT3 pathway, it may be
a converging point of signaling between cancer cells and cells
in the TME. In agreement with this assertion, a recent study

Figure 7. A model depicting the transition from the P-switch to the T-switch during growth factor (GF)–induced cell migration. GF-triggered
activation of MEK1/2 leads to TNS3/PTEN phosphorylation and the exchange of binding partners for DLC1 and PI3K for enhanced RhoA and Rac1 activ-
ity to initiate cell migration. At the same time, MEK1/2 phosphorylates ERK1/2, and the latter translocates to the nucleus to promote IL-6 transcription,
leading to activation of the IL-6-JAK–STAT3–IL-6 amplification loop and increased CTEN expression. In the later phase of GF-induced cell migration, DLC1
and PI3K bind preferentially to CTEN and VAV2 to maintain RhoA and Rac1 activity for sustained migration. CTEN, C-terminal tension; DLC1, deleted in liver
cancer 1; ERK1/2, extracellular signal–regulated protein kinase 1/2; IL-6, interleukin-6; JAK, Janus kinase; MEK1/2, mitogen-activated protein kinase kinase 1/
2; P-switch, phosphorylation switch; PTEN, phosphatase and tensin homolog; STAT3, signal transducer and activator of transcription 3; T-switch, tran-
scriptional switch; TNS3, tensin-3; VAV2, vav guanine nucleotide exchange factor 2.
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has identified a critical role for STAT3 in tumorigenesis and
metastasis of pancreatic ductal adenocarcinoma that is
activated by the leukemia inhibitory factor secreted by the
pancreatic stellate cells in a paracrine fashion (42). Similarly,
the IL-6–JAK–STAT3 pathway is frequently hyperactivated
in cancer, and several agents targeting components of this
pathway, including IL-6, IL6R, and the JAKs, have been
developed for the treatment of certain hematopoietic ma-
lignancies, and many more, including STAT3 inhibitors, are
undergoing clinical trials or preclinical investigation for the
treatment of solid tumors (22, 28, 43). The multiple targets
identified from our study offer alternative means or combi-
nation strategies to curb cancer cell migration by inhibiting
STAT3 or its upstream regulators, including IL-6, JAK1/2,
MEK1/2, Src, and the RTK (44). Future studies using mouse
models of cancer would help define the role of the P- and
T-switches in cancer metastasis and establish the therapeutic
relevance of targeting the MEK1/2–ERK1/2 and IL-6–
STAT3 axes individually or in combination for the treatment
of metastatic cancer.

It should be noted that cell migration may be regulated
by a variety of different mechanisms depending on the cell
type and physiological or pathological context. For example,
many cancer cells are characterized with mutations or
deletions in the DLC1 or PTEN gene. For these cells, the
P-switch may be replaced by a different mechanism to
regulate their migration. Moreover, DLC1 itself can be
phosphorylated by a number of different kinases, including
Src, ERK1/2, CDK5, and Akt, which may lead to changes in
its Rho-GAP activity (45–47). By the same token, it is un-
likely that VAV2 is the only GEF involved in regulating
epithelial cell migration in the late phase. It is possible that
the combination of different GEFs and GAPs underlies the
migration of different cells in response to different motility
cues. Future studies should focus on identifying the differ-
ences in the regulatory mechanism of cell migration between
normal and cancer cells and understanding how diverse
signaling inputs (e.g., GFs, cytokines, chemokines) may be
integrated at the molecular level to control physiological and
pathological cell migration.

Experimental procedures

Cell culture

MCF-10A, MDA-MB-231, and HCC-78 cells were ob-
tained from American Type Culture Collection. The MCF-
10A culture medium contained Dulbecco’s modified Eagle’s
medium: F12 medium supplemented with antibiotics, EGF
(20 ng/ml), insulin (10 μg/ml), cholera toxin (100 μg/ml),
hydrocortisone (0.5 μg/ml), heat-inactivated horse serum
(5%; Invitrogen), and 1% penicillin/streptomycin. MDA-MB-
231 cells were maintained in Dulbecco’s modified Eagle’s
medium: F12 containing antibiotics, 10% fetal bovine serum,
and 1% penicillin/streptomycin. HCC-78 cells were main-
tained in RPMI1640 medium containing antibiotics, 10%
fetal bovine serum (Sigma–Aldrich), and 1% penicillin/
streptomycin.

Serum-free (starved) medium contained no serum or GF.
GF treatment medium (serum free) contained 20 ng/ml EGF
for MCF-10A, 30 ng/ml PDGF for MDA-MB-231, and 10 ng/
ml HGF for HCC-78. Cells were incubated with the GF for the
specified durations after 16-h serum starvation at 37 �C in 5%
CO2.

Wound-healing assay

Cells at �100% confluency post 16 h serum starvation were
scratched using a 200 μl pipette tip, and the cell debris was
washed away with PBS. The cells were then incubated for 16 h
with or without GFs or inhibitors. Images were captured at the
beginning (0 h) and desired intervals (up to 16 h) using the
Infinity Capture Imaging System (Lumenera Corporation) on a
Motic AE31 Inverted Microscope (Matic Microscope). The
migration data were quantified using ImageJ (National In-
stitutes of Health; RRID: SCR_003070).

Cell proliferation assay

Cells were cultured in 100 μl medium in a 96-well plate.
After 16 h of serum starvation, cells were incubated in serum-
free medium with or without IL-6, EGF, or a mixture of IL-6
and EGF for 16 h. Vial cell number was determined using
WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-
(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) cell
proliferation assay (Sigma). Specifically, 10 μl of WST-8 so-
lution was added to each 100 μl well. The plate was then
incubated in the dark at 37 oC for 30 min before absorbance at
460 nm was measured.

Flow cytometry

Cells at�100% confluency post 16 h of serum starvation were
incubated with EGF (20 ng/ml), IL-6 (20 ng/ml), or a mixture of
EGF and IL-6 for 16 h. Subsequently, the cells were harvested
and resuspended in annexin-binding buffer (10 mMHepes [pH
7.4], 140 mM NaCl, and 2.5 mM CaCl2) and stained with
annexin V-FITC (BioLegend) and SYTOX AADvanced
(Thermo Fisher Scientific). The samples were analyzed using
LSRII flow cytometer (BD Biosciences) and FlowJo, version 10
(FlowJo LLC). A minimum of 20,000 events was recorded.

IP and WB

Cells were lysed in cold lysis buffer (1% NP-40, 50 mM Tris,
pH 7.4, 150 mM NaCl, 2 mM EDTA, 50 mM NaF, 10%
glycerol, Halt Protease, and Phosphatase Inhibitor Cocktail)
(Thermo Fisher Scientific; diluted at 1:100). To prepare cell
lysate, cell pellets were sonicated in 0.2 ml lysis buffer on ice,
and the lysate was spun down at 16,000g for 15 min at 4 �C.
The supernatant was collected, and the protein concentration
was determined using Pierce Protein Assay Kit (Thermo Fisher
Scientific). After clearing the lysate with appropriate pre-
immune serum and protein G (Roche), IP was carried out
using the indicated antibodies (3 μg antibody applied per re-
action). The IP proteins were redissolved in SDS–PAGE
loading buffer. After separation in SDS–PAGE gel, the pro-
teins were transferred to polyvinylidene difluoride membrane,
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immunoblotted with appropriate secondary antibodies, and
visualized by ECL. Specifically, rat antimouse nonreduced–
specific IgG (Abcam; Ab131368) and mouse anti-rabbit light
chain–specific IgG (Jackson ImmunoResearch; 211-032-171)
was used as the secondary antibodies. Where appropriate, goat
anti-rabbit/mouse or rabbit antigoat IgGs (Bio-Rad) was used
as the secondary antibodies.

RNA preparation and real-time PCR analysis (RT-qPCR)

Total RNAwas extracted using theQIAGENRNeasyMini Kit
(74104), and the reverse transcription reaction was performed
using QIAGEN QuantiTect Reverse Transcription Kit (205311)
following themanufacturer’s protocol.Aftermixing the extracted
RNA with FastStart SYBR Green Master (04673492001; Roche)

and specific primers, the RT-qPCR was performed on a Stra-
tagene Mx3005P QPCR System (QIAGEN-SABiosciences). The
sequences of the primers are listed in Table 1.

RhoA or Rac1 activation assay

RhoA or Rac1 activities were measured using the Rho or Rac
Activation Assay Biochem Kit (Cytoskeleton). Cells at 40 to
60% confluency were treated with GFs. After treatment, the
cells were washed in ice-cold PBS and lysed. Equal amounts of
whole-cell lysate were incubated with 20 mg Rho-binding
domain of rhotekin or p21 binding domain of p21 activated
kinase 1 beads for 1 h at 4 �C. The beads were washed three
times with PBS, and the bound RhoA or Rac1 proteins were
analyzed by WBs using an anti-RhoA or anti-Rac1 antibody.

Table 1
Reagent or resource

Reagent or resource Source Identifier

Antibodies
Rabbit polyclonal anti-TNS3 Sigma SAB4200296
Mouse monoclonal anti-CTEN Abnova H00084951-M01
Rabbit monoclonal anti-STAT3-pY705 Cell Signaling Technology D3A7
Mouse monoclonal anti-STAT3-pS705 Cell Signaling Technology 9136
Mouse monoclonal anti-STAT3 Santa Cruz Sc-8019
Rabbit monoclonal anti-pERK1/2 Thermo Fisher Scientific MA515174
Rabbit monoclonal anti-ERK1/2 Thermo Fisher Scientific MA515134
Rabbit polyclonal anti-β-tubulin Santa Cruz Sc-9104
Goat polyclonal anti-laminA/C Santa Cruz Sc-6215
Mouse monoclonal anti-IL-6 R&D Systems MAB-206
Rabbit monoclonal anti-PTEN Cell Signaling Technology 9559
Mouse monoclonal anti-DLC1 BD Biosciences 612020
Mouse monoclonal anti-PI3K Millipore 1981549
Mouse monoclonal anti-RhoA Cytoskeleton ARH03
Rabbit polyclonal anti-Rac1 Santa Cruz Sc-217
Mouse monoclonal anti-VaV2 Santa Cruz Sc-271442
Rabbit monoclonal anti-paxillin Abcam ab32084
Mouse monoclonal anti-phospho-serine Millipore 05-1000
Mouse monoclonal anti-phospho-threonine Cell Signaling Technology 9386
Rat antimouse nonreduced–specific IgG Abcam Ab131368
Mouse anti-rabbit light chain–specific IgG Jackson Immuno Research 211-032-171
Goat antimouse IgG Bio-Rad 1706516
Goat anti-rabbit IgG Bio-Rad 1706515
Rabbit antigoat IgG Bio-Rad 1721034

Chemicals and proteins
EGF Sigma E9644
HGF Millipore GF116
PDGF Sigma SRP3138
EGFR inhibitor Millipore 324647
JAK inhibitor Millipore 420097
S3I-201 Millipore 573130
Hydrocortisone Sigma H4001
Cholera toxin Sigma C8052
Insulin Sigma I0516
Src inhibitor I Sigma 567805
VAV2 siRNA Thermo Fisher AM16708
Scramble siRNA Thermo Fisher AM4611
U0126 Promega V1112A
IL-6 Pepro Tech 200-06

Experimental models: cell lines
Human: MCF-10A cell line ATCC CRL-10317
Human: MDA-MB-231 cell line ATCC HTB-26
Human: HCC-78 cell line DSMZ ACC563

Oligonucleotides
TNS3-forward (For ChIP–qPCR) GGGCCATCTGAATCTCAGGG N/A N/A
TNS3-reverse (For ChIP–qPCR) GGAGGAGGTCAGGGAAGTCT N/A N/A
CTEN-forward (For ChIP–qPCR) GCCCCTCTAGAACAGGGAGA N/A N/A
CTEN-reverse (For ChIP–qPCR) TTCCCTGAGGGGAGGACATT N/A N/A
IL-6-forward (For ChIP–qPCR) GGGCCGACTAGACTGACTTC N/A N/A
IL-6-reverse (For ChIP–qPCR) AACCCTCAGCTCATGCCAAA N/A N/A
IL-6-forward (For qRT–PCR) AGTGAGGAACAAGCCAGAGC N/A N/A
IL-6-reverse (For qRT–PCR) AGCTGCGCAGAATGAGATGA N/A N/A

Software
ImageJ ImageJ https://imagej.net/Welcome

Abbreviations: ATCC, American Type Culture Collection; N/A, not available.
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ChIP

Cells were washed twice with cold PBS and collected in 1-ml
microcentrifuge tubes. After centrifugation for 5 min at 2000g,
supernatants were removed and 1 ml PBS containing 0.1% NP-
40was added to the pellet. After triturating the pellet a few times
with a pipette tip, the resuspended lysate was centrifuged for
5 min under 750g. The supernatant was removed, and the nu-
clear fraction in the pellet was collected. The ChIP experiment
was performed essentially as described on Abcam’s Web page
(https://docs.abcam.com/pdf/chromatin/A-beginners-guide-to-
ChIP.pdf). Specifically, 5 g antibody or IgG control was used for
IP. The sequence of primers is listed in Table 1.

Confocal immunofluorescence microscopy

Serum-starved cells grown in 35-mm glass-bottom dishes
(P35G-1.0-14-C; MatTek) were treated with GFs for the
specified durations. Cells were then fixed in 10% neutral
buffered formaldehyde at room temperature for 1 h. After
being rinsed in PBS, cells were incubated with 0.1% Triton
X-100 (in PBS) at room temperature for 30 min. After three
PBS washes, the cells were incubated with 2% bovine serum
albumin at room temperature for 60 min, followed by PBS
wash, and incubation with anti-Paxillin antibody (ab32084;
Abcam; 1:200) for 1 h at room temperature. Samples were then
incubated with the corresponding Alexa Fluor-488 for 1 h
followed by incubation with rhodamine phalloidin (Invitrogen;
1:200). Actin was stained with rhodamine phalloidin (Invi-
trogen; 1:50), and nuclei were stained with Hoechst in water
for 5 min. The specimens were imagined on a ZEISS LSM 800
confocal microscope (Carl Zeiss MicroImaging) with pinhole
set at 1 airy unit using 488, 564, and/or 633 nm excitation and
an ×63/1.4 oil objective lens.

Mass spectrometry

After the PI3K IP, beads were resuspended in 20 μl 100 mM
ammonium bicarbonate. The bound proteins were subjected
to on-beads digestion overnight at 37 �C by adding 100 ng
trypsin (Promega; catalog no. v5113). The next morning,
100 ng of extra trypsin was supplemented to each IP sample
and the samples were incubated for four more hours at 37 �C,
to complete the digestion. The digested peptides were sepa-
rated from beads by a glass fiber filter, desalted by the ZipTip
C18 column (Millipore), and were eluted in 5 μl 70% aceto-
nitrile/0.1% formic acid. The peptide elution was diluted in
0.1% formic acid, and the diluted samples were injected into
the mass spectrometry.

The peptides were separated on a 50 cm EASY_Spray C18
column (catalog no. ES803A; Thermo Fisher Scientific), over a
90-min gradient of 3% to 35% solvent B (0.1% formic acid/
100% acetonitrile). The samples were analyzed by a Q Exactive
instrument (Thermo Scientific) in the data-dependent acqui-
sition mode. Full scans were acquired with resolution 70,000 at
200 m/z, and with 1E6 ions accumulated within a maximum
injection time of 50 ms. The ten most intense ions with charge
states 2, 3, or 4 were sequentially isolated to a target value of

5E4 with a maximum injection time of 50 ms, fragmented, and
detected at 17,500 resolution.

The mass spectrometric data were analyzed in the Max-
Quant environment, version 1.6.1.0. The MS/MS spectra were
matched against the human Swiss-Prot database (20,238 en-
tries; retrieved on May 22, 2018). The search included
methionine oxidation and N-acetylation of protein as variable
modifications. Up to two missed cleavages were allowed.

Statistical analysis

All statistical analyses were performed using Excel. All data
based on statistical analysis were shown as means ± SD. Sta-
tistical significance was analyzed by paired Student’s t test. All
p values were two tailed, and the level of statistical significance
was set as *p < 0.05 and **p < 0.001.
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