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Cell Regulation by Phosphotyrosine-Targeted Ubiquitin Ligases

Jonathan A. Cooper,® Tomonori Kaneko,” Shawn S. C. Li°

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA% Department of Biochemistry, Western University, London, Ontario,

Canada®

Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of
phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Be-
cause ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently
inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disor-
ders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here
we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways
through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.

hosphorylation and ubiquitination are among the common-

est and best-studied posttranslational modifications of pro-
teins. A phosphate group or ubiquitin molecule can trigger or
obstruct protein-protein interactions, alter subcellular localiza-
tion, stabilize a particular protein conformation, or have myriad
other effects. Phosphorylation is directly catalyzed by protein ki-
nases, but ubiquitination is more complex, requiring sequential
activity of E1, E2, and E3 ubiquitin-activating, -conjugating, and
-ligating enzymes (1-5). E3 ubiquitin ligases fall into two major
groups: HECT domain ligases receive ubiquitin from an E2 en-
zyme and transfer it to a bound substrate, while RING-type ligases
position an E2-ubiquitin conjugate near a substrate protein to
facilitate ubiquitin transfer. Both phosphorylation and ubiquiti-
nation are reversible; protein phosphorylation is reversed by pro-
tein phosphatases and ubiquitination by deubiquitinating enzymes
(DUBs) (6-8). Therefore, both phosphorylation/dephosphoryla-
tion and ubiquitination/deubiquitination can allow repeated cy-
cles of protein modification. Reversible ubiquitination is particu-
larly important in DNA repair and NF-«B signaling. However,
many ubiquitination events lead irreversibly to protein destruc-
tion, allowing regulation of protein turnover. For example, K48
polyubiquitin chains primarily route cytosolic proteins to the pro-
teasome, while modification of many Lys residues with single
ubiquitin molecules (multimonoubiquitination) has several func-
tions, including routing membrane proteins for destruction in the
lysosome (9-11). The irreversibility of proteolysis means that the
ubiquitin-proteasome and ubiquitin-lysosome pathways directly
control protein life spans.

Protein phosphorylation and ubiquitination cross talk at many
levels (12). In this review, we focus on situations where phosphor-
ylation of a substrate creates a binding site for an E3 ligase, ren-
dering ubiquitination dependent on prior phosphorylation of that
substrate (13). Such phosphorylation-dependent substrate selec-
tion has particular importance because it can layer negative feed-
back onto an otherwise reversible phosphorylation event (Fig. 1).
In principle, increasing the kinase activity in a simple kinase/phos-
phatase cycle simply increases the steady-state level of the phos-
phorylated substrate (Fig. 1A and C), but adding phospho-specific
ubiquitination and proteolysis reactions alters the kinetics, caus-
ing the level of phosphorylated substrate to decay back to baseline
as the total substrate pool is depleted (Fig. 1B and C). This consti-
tutes a negative-feedback loop that is “hardwired”; no other reg-
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ulatory inputs are required. In principle, the E3 ligase limits the
duration of signaling by a substrate and may introduce a refrac-
tory period during which signaling cannot recur. Perhaps for this
reason, phosphorylation-dependent ubiquitin ligases are key con-
trollers of different steps in the cell cycle and in DNA repair, signal
transduction, and other fundamental cellular events (12).

This review focuses on the subset of phosphorylation-depen-
dent ubiquitin E3 ligases that require phosphotyrosine (pY) in
their substrates. These ligases fall into two well-studied groups,
Cbl family proteins and cullin 5 (Cul5)-RING ligase complexes
(CRL5s) bound to suppressor of cytokine signaling (SOCS) pro-
tein adaptors, as well as a less-studied ligase named Hakai. Here we
introduce these ligases and discuss their strategies for binding pY,
their substrates, and their biological functions. Because tyrosine
protein kinases are master regulators of signal transduction cas-
cades, pY-dependent ubiquitination might regulate cell growth,
proliferation, motility, survival, and differentiation. Indeed, ge-
netic evidence reviewed here shows the importance of Cbl and
SOCS proteins in cancer, autoimmunity, and endocrine disor-
ders, including diabetes. However, some Cbl and SOCS proteins
have additional binding, scaffold, or adaptor functions indepen-
dent of their ubiquitin ligase activity. This greatly complicates the
identification of critical pY substrates and our understanding of
how pY-dependent E3 ligases regulate cell biology.

A BRIEF HISTORY OF Cbl, Hakai, AND SOCS FAMILY
PROTEINS

The c-Cbl gene was identified as the cellular homolog of the v-Cbl
oncogene in Cas-Br-M mouse retrovirus (14). c-Cbl and its rela-
tives Cbl-b and Cbl-3 contain an N-terminal pY-binding tyrosine
kinase-binding (TKB) domain and a central zinc-binding C;HC,
RING motif (15-17). c-Cbl suppresses transformation in part by
binding and downregulating receptor tyrosine kinases (RTKs),
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FIG 1 Regulation by phosphorylation-dependent ubiquitin ligases. Phosphorylation-dependent ubiquitination can provide negative feedback. (A) A simple
system with substrate protein X undergoing constitutive slow synthesis and equal slow degradation is acted on by a regulated protein kinase and a constitutive
phosphatase. (B) A phosphorylation-dependent ubiquitin ligase can promote the ubiquitination of the phosphosubstrate and target it for lysosomal or protea-
somal degradation. Ubiquitination may be reversed by deubiquitinases (DUBs). (C) Signal outputs over time for schemes A and B. In the simple kinase/
phosphatase system (curve A), kinase activation causes a sustained increase in the level of phosphosubstrate. With the addition of a ubiquitin ligase and DUBs
(curve B), kinase activation leads to a transient increase in the level of phosphosubstrate. Phosphorylation/dephosphorylation is assumed to be faster than
ubiquitination/deubiquitination. Note that the ubiquitinated substrate can also be dephosphorylated and rephosphorylated, but this does not affect the negative
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but the mechanism was unclear until Cbl’s RING domain was
found to stimulate ubiquitin transfer from an E2-ubiquitin donor
to nearby proteins (18). pY substrates for Cbl family members
bind to the TKB domain and receive ubiquitin from an E2 bound
to the RING domain. The C termini of ¢-Cbl and Cbl-b contain
proline-rich regions and phosphorylation sites that allow them to
also act as signaling scaffolds (17).

Hakai (also called Cbl-like-1 and Cbll1) was first identified as a
RING-containing, E-cadherin-binding protein that resembled
Cbl (19). However, we now know that Hakai and Cbl have differ-
ent mechanisms of pY substrate binding. Hakai dimerization cre-
ates an unusual HYB domain that binds pY substrates (20). The
RING domains are directly adjacent to the HYB domain, allowing
positioning of E2 and ubiquitin close to the pY residues in the
substrate.

The SOCS proteins SOCS1-7 and CIS (cytokine-inducible SH2
protein) were discovered as cytokine-inducible inhibitors of sig-
naling, STAT-induced STAT inhibitors, and cytokine-inducible
SH2 proteins (21-25). They were initially shown to compete with
STATS for binding to pY sites on cytokine receptors and to bind to
and inhibit cytokine-activated kinases called JAKs. However, CIS
bound to erythropoietin receptors through a pY site that was dis-
pensable for signaling, calling into question the simple competi-
tion model. Moreover, erythropoietin induced CIS ubiquitination
and proteasome inhibitors prolonged erythropoietin signaling
(26). Later, SOCSI1 was found to be induced by RTKs and to in-
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hibit signaling at the level of the RTK and intracellular signaling
proteins, such as Vavl (27). Subsequently, SOCS1 was found to
stimulate ubiquitination and degradation of tyrosine-phosphory-
lated Vavl (28). We now know that all eight SOCS proteins con-
tain a consensus sequence (a SOCS-BC box) that mediates their
association with a multisubunit CRL5 complex (29-31). The
other subunits of a SOCS-CRL5 complex which comprises
elongin B, elongin C, cullin 5, and Rbx2 (RNF?7) are invariant (32).
(Under some circumstances, cullin 5 can form a complex with
Rbx1 [33-35], but Rbx2 is more common). Rbx2 contains a RING
domain and binds E2-ubiquitin conjugates. SOCS-CRL5 thus
combines a substrate recognition domain (SH2) and a ubiquitin
transfer domain (RING) in different subunits of a multiprotein
complex. The RING protein is quite distant from the SH2 domain,
potentially facilitating polyubiquitination.

pY SUBSTRATE BINDING AND UBIQUITINATION BY Cbl
PROTEINS

Cbl family proteins contain a tyrosine kinase-binding or TKB do-
main and a RING domain, linked by a well-conserved linker helix
region (LHR). ¢-Cbl and Cbl-b also share a proline-rich region
and a C-terminal ubiquitin-associated (UBA) domain (16) (Fig.
2A). The TKB domain harbors a 4-helix bundle (4H), a Ca-bind-
ing EF hand, and an atypical SH2 domain (15) (Fig. 2B). The
sequence of the SH2 domain is highly divergent, yet it forms a
classic SH2 fold and binds pY peptides in a conventional way (15).
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FIG 2 Structures of three families of E3 ligases that recognize tyrosine-phosphorylated ligands. (A) Domain structure of c-Cbl and Cbl-b. Cbl-c is similar but
terminates after the RING domain. (B) Crystal structure of the c-Cbl TKB domain in complex with a tyrosine-phosphorylated peptide derived from ZAP-70
(PDB code 2CBL) (15). In this panel and in panels D and G, « helices and B strands are shown in columns and ribbons, respectively. The peptide is shown as
orange sticks, except for the pTyr residue, which is red. The regions in the TKB domain are colored according to the colors in panel A. The arginine residue of the
SH2 domain (Arg294), essential for binding to the phosphate group of pTyr, is blue. (C) Activation of Cbl via a conformational change triggered by tyrosine
phosphorylation of the LHR linker region. Shown here is the structure, in surface representation, of a c-Cbl-E2—substrate peptide complex in an inactive
conformation (left, PDB code 1FBV [36]) or when activated through phosphorylation of Tyr371 in the linker region (right, PDB code 4A4C [37]). The E2 and
RING domains are blue and magenta, respectively. The SH2 domain is cyan. A ZAP-70-derived phosphopeptide is orange. The LHR linker between the SH2 and
the RING domains is represented by a green noodle, with Tyr371 highlighted in red. (D) Homodimeric structure of the Hakai HYB domain (PDB code 3VK6
[20]). The dimer coordinates six zinc ions (gray balls), two of which are located behind a1 and 1" helices and are thus invisible in this figure. Four residues (i.e.,
His127, Tyr176, His185, and Arg189) from each monomer that contribute to phosphopeptide recognition are shown as blue sticks. (E) Diagram of a SOCS-CRL5
complex. (F) Structural model of a SOCS-CRL5 complex. The model was constructed according to reference 149, based on the following crystal structures: the
cullin 5 C-terminal domain in complex with Rbx1 (PDB code 3DPL [150]), the cullin 5 N-terminal domain in complex with elongin B, elongin C, and Socs2
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The TKB domain allows Cbl to bind to pY proteins, such as active
RTKs. Cbl may then become phosphorylated and bind other pro-
teins, serving as an adaptor for protein complex assembly. In ad-
dition, pY proteins bound to the TKB domain can be ubiquiti-
nated by an E2 enzyme bound to the RING domain. However, the
structure of the TKB-LHR-RING region of c-Cbl revealed that an
E2 enzyme bound to the RING domain would be unable to access
the pY substrate by the TKB domain (36) (Fig. 2C, left). The mys-
tery was solved when it was found that phosphorylation of Tyr371
in c-Cbl (Tyr363 in Cbl-b) within the LHR linker region induces a
drastic conformational change that, in effect, reorients the sub-
strate so that it is now close to the RING and E2 domains (37-40)
(Fig. 2C, right). This phosphorylation switch may help explain
how Cbl can alternatively promote signaling as an adaptor or in-
hibit signaling as an E3 ligase, as described below.

pY SUBSTRATE SELECTION BY Hakai

Hakai was discovered as a Cbl-like protein that binds to the mem-
brane protein E-cadherin (19). Hakai targets a cytoplasmic
NVYYY motif in E-cadherin when it is phosphorylated on the
second tyrosine (19, 20). Interestingly, the same motif is also the
binding site for the Numb PTB domain, although Numb binds
when the motif is nonphosphorylated (41). A NVYpYY peptide
binds to an unusual structure formed by Hakai dimerization. The
Hakai sequence contains a classic C;HC, RING followed by a
zinc-binding C,H, motif known as a pTyr-binding (pTyrB) do-
main. In the dimer, two pTyrB regions come together in an anti-
parallel arrangement, mediated by strand exchange and stabilized
by Zn ions and the RING domains, to create a basic channel that
binds pY (20) (Fig. 2D). This dimeric structure is known as an
HYB (Hakai pY-binding) domain. The HYB domain recognizes,
in addition to the NVYpYY target sequence, the flanking acidic
residues. In the same vein, Hakai has been shown to bind other
acidic pY-containing sequences found in Cortactin and Dok1, but
the physiological significance of these interactions is not defined
(20). The Hakai-related proteins ZNF645, LNX1, and LNX2 also
have RING-pTyrB homology, but the functions and structures of
these domains are unknown (20).

pY SUBSTRATE RECOGNITION BY SOCS PROTEIN ADAPTORS
FOR CRL5

The C termini of all SOCS proteins contain an SH2 domain that
binds pY, followed closely by a SOCS-BC box for binding to Cul5
and the elongin BC subunits of CRL5 (Fig. 2E). The SH2 domain
positions a pY substrate on the same side of Cul5 as Rbx2, which
contains a RING domain and positions an E2-ubiquitin conjugate
for ligation (Fig. 2F). SOCS SH2 domains bind pY peptides
through modified SH2-pY interactions, as shown for the SOCS6
SH2 domain in complex with a juxtamembrane phosphorylation
site, Tyr568, in c-Kit (42) (Fig. 2G). Although the SOCS SH2 do-
main adopts a typical SH2 fold, it features an unusually long BG
loop, and together with the EF loop, they form an elongated chan-
nel to allow interactions with residues between 3 and 6 residues C
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terminal to the pY in the c-Kit peptide. This unique binding mode
dictates that only certain phosphopeptides (and the correspond-
ing proteins) would be targeted by SOCS6.

SOCS proteins may also recruit non-pY substrates to CRL5.
SOCS?7 contains a proline-rich region that binds the SH3 domains
of Nck, Grb2, PLCry, and vinexin (43, 44). SOCS7 shuttles between
the nucleus and cytoplasm and acts as a bridge between septins
and Nck (45). However, there is no evidence that tyrosine phos-
phorylation or ubiquitination is involved. Tyrosine phosphoryla-
tion of SOCS3 creates a binding site for the SH2 domains of Nck
and Crk/CrkL (46). It is again unclear if Nck or Crk/CrkL is a
substrate for ubiquitination. Finally, using overexpressed pro-
teins, the N-terminal region of SOCS6 was shown to bind to the
SH2 kinase region of active (but not inactive) Lck and less well to
other Src-related kinases (47).

SUBSTRATES AND FUNCTIONS OF Cbl

The first insights into Cbl function came from Caenorhabditis
elegans genetics (48). Mutation of Cbl restored normal develop-
ment to worms containing a weakly active mutant epidermal
growth factor receptor (EGFR), implying that c-Cbl inhibits the
EGFR. Subsequent animal cell studies showed that EGF stimulates
the binding of c-Cbl to EGFRs and Cbl tyrosine phosphorylation
(49). While EGF-activated EGFRs are targeted to the lysosome, an
EGEFR relative, ErbB4, which does not bind Cbl, simply recycles
(50). This suggested a role for c-Cbl in trafficking between endo-
somes and lysosomes. Indeed, overexpression of c-Cbl stimulated
EGF-dependent EGFR ubiquitination, internalization, and degra-
dation, which was dependent on the Cbl RING domain (39, 51).
Following the discovery that the c-Cbl RING domain has intrinsic
E3 ligase activity (18), the results suggested that EGF stimulation
induces c-Cbl binding and EGFR ubiquitination and that ubiq-
uitination then signals lysosomal trafficking. Subsequent studies
have filled in critical details about how c-Cbl binds and ubiquiti-
nates the EGFR and about the importance of ubiquitination for
lysosomal degradation (52).

The basic steps in EGFR downregulation by c-Cbl are as fol-
lows (52). EGF binding activates the EGFR kinase domain and
leads to autophosphorylation on Tyr1068 and Tyr1086. These
sites then bind an adaptor protein, Grb2, which binds in turn to a
proline-rich region in ¢-Cbl. The complex is further stabilized by
a second, direct interaction of the c-Cbl TKB domain with the
EGFR pY1045 site. c-Cbl then transfers ubiquitin onto multiple
lysine residues within the EGFR (53). These lysines are mono-, not
poly-, ubiquitinated (54, 55). While multimonoubiquitination
can trigger receptor endocytosis, it is not required (52, 55). Rather,
multimonoubiquitination stimulates sorting to multivesicular
bodies and degradation in the lysosome. Sorting is presumably
mediated by ubiquitin-binding domains contained in Hrs and
other components of the ESCRTO complex (52). Thus, a mutant
EGFR lacking all ubiquitination sites is internalized but not de-
graded (53), and wild-type EGFRs are internalized but not de-
graded in c-Cbl knockout fibroblasts (56).

(PDB code 4JGH [151]), the structure of cullin 1, used here as a template for joining the N-terminal and C-terminal fragments of cullin 5 structures (PDB code
1LD]J [148]), and the Socs6 SH2 domain bound to a tyrosine-phosphorylated peptide (PDB code 2VIF [42]). The magenta molecule is Rbx1 (instead of Rbx2),
since there are no available Rbx2-cullin complex structures. (G) SOCS6 SH2 domain in complex with a phosphorylated peptide derived from the
juxtamembrane region of the receptor tyrosine kinase c-KIT (PDB code 2VIF [42]). The bound peptide is shown in orange sticks except for the pTyr residue,
which is highlighted in red. The Arg409 residue of the SH2 domain, essential for pTyr recognition, is shown as blue sticks. The peptide is bound between the BG

and EF loops.
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c-Cbl-dependent multimonoubiquitination also downregu-
lates other RTKs and the gp130 cytokine receptor, thereby inhib-
iting responses to a range of growth factors (57, 58). Removal of
Cbl might thus be expected to increase mitogenic signaling. In-
deed, c-Cblis frequently mutated in lung cancer (59). EGFRis also
frequently mutated in lung cancer, and some mutations in EGFR
may decrease its downregulation by c-Cbl, leading to increased
EGFR activity (60). EGFR ubiquitination is also implicated in
breast cancer; an EGFR-specific DUB named Cezanne-1 is up-
regulated in many cases of breast cancer (61). c-Cbl and Cbl-b are
also required for routing activated, tyrosine-phosphorylated T cell
receptors to the lysosome for degradation, thus downregulating
the immunological response and suppressing autoimmunity (62).

Despite the importance of c-Cbl in receptor trafficking, cancer,
and immunity, mutant mice completely lacking c-Cbl are viable
and fertile (63). The mild phenotype may be due to redundancy
with Cbl-b or Cbl-c. Indeed, close examination revealed altera-
tions in hematopoiesis, T cell response, mammary epithelial
growth, and fat and energy metabolism, consistent with c-Cbl
stimulating the downregulation of various receptors (63, 64). Cu-
riously, point mutation of the c-Cbl RING domain caused a much
stronger phenotype— death in utero—suggesting that c-Cbl has
significant developmental roles (65). The ¢-Cbl RING mutant
may compete with Cbl-b and Cbl-c, allowing the true scope of
c-Cbl functions to be exposed. However, the interpretation is
challenging because evidence suggests that the c-Cbl RING mu-
tant has gain-of-function effects. First, mice expressing half the
normal amount of the RING mutant were viable and showed the
same fat and energy defects as the knockout mice, indicating that
these phenotypes likely require ubiquitin transfer (65). Second,
the RING mutant mice suffer complete thymic ablation due to
hyperactivation of phosphatidylinositol 3’ (PI3") kinase, not seen
in the knockout mice (66). The results suggest that both signal
inhibition by ¢-CbI’s RING and signal activation by c-Cbl’s adap-
tor function occur in vivo.

Human cancer mutations also indicate that c-Cbl has both
positive and negative effects in vivo. Many c-Cbl mutations found
in myeloid neoplasms are heterozygous missense and frameshift
mutations (67, 68). These mutations generally leave the TKB do-
main and LHR intact, so the mutant proteins may act as domi-
nant-interfering alleles, competing with endogenous Cbl proteins
for binding sites on the receptor. However, they may have alter-
natively gained mitogenic activity. Tyr371 substitutions, fre-
quently found in spontaneous neoplasms and in a cancer predis-
position syndrome called Noonan syndrome, present a curious
case (67, 69). Since phosphorylation of Tyr371 stimulates ubiq-
uitination of bound pY substrates (Fig. 2C), Tyr371 mutation is
likely to inhibit ubiquitination. However, these alleles transform
cells only when endogenous c-Cbl is absent (68, 69). This is diffi-
cult to explain as a dominant interfering effect and suggests that
these c-Cbl mutants may have gained oncogenic activity. c-Cbl
mutants that have decreased ubiquitination activity may be more
stable, and increased c-Cbl protein levels may stimulate signaling
through an adaptor function.

Some ¢-Cbl functions may be due to ubiquitination of cyto-
plasmic tyrosine kinases and pY proteins, but ubiquitination-in-
dependent mechanisms may also play a role. ZAP70 is a case in
point. A major phenotype of ¢-Cbl knockout mice is lymphoid
hyperplasia and increased T cell signaling via the T cell receptor-
associated kinase ZAP70 (63, 70, 71). However, ZAP70 degrada-

1890 mch.asm.org

Molecular and Cellular Biology

tion is not altered. Similarly, when Cbl-b is overexpressed in T
cells, the p85 subunit of PI3’ kinase is ubiquitinated, but its
steady-state abundance and half-life are not affected (72). Never-
theless, ubiquitination inhibits the recruitment of p85 to the co-
receptor CD28. Decreased p85 ubiquitination and increased PI3’
kinase activity may explain the hyper-activation of Cbl-b knock-
out T cells and consequent autoimmunity, but p85 degradation
may not be involved (73, 74). Cbl-b also regulates the phosphatase
PTEN, independently of its ubiquitin ligase activity (75). These
results suggest ubiquitin-independent and degradation-indepen-
dent effects of both ¢c-Cbl and Cbl-b.

c-Cbl has also been implicated in the degradation of the Src
kinase. Activation induces Src downregulation by ubiquitination
and proteasomal degradation (76, 77). Overexpressed Cbl was
found to stimulate ubiquitination of Src and Fyn (a Src-related
kinase), implicating endogenous Cbl in normal cells (78, 79). In-
deed, Fyn protein levels are increased in c-Cbl knockout cells (79),
and overexpressed truncated Cbl TKB inhibits Src turnover, as
expected if the TKB has a dominant negative effect (80). However,
overexpressed Cbl TKB may inhibit the binding of other Src-spe-
cific E3 ligases. Indeed, other evidence, described below, suggests
that SOCS-CRL5 complexes may be responsible for downregulat-
ing endogenous Src. Moreover, genetic experiments in osteoclasts
are not consistent with Cbl inhibiting Src but are consistent with
Src requiring Cbl for signaling (81-83). Src and other tyrosine
kinases may phosphorylate Cbl at sites that bind PI3’ kinase and
Crk, thus stimulating signaling (55). Phosphorylation of Cbl by
Srcalso stimulates Cbl ubiquitination and degradation. Decreased
Cbl means that there is less downregulation of RTKs and more
RTK activity (78, 84). This may contribute to the synergy between
Src and RTKs for transformation (85).

The original concept that Cbl family proteins target cytoplas-
mic proteins like p85, ZAP70, and Src for degradation is difficult
to reconcile with the findings that c-Cbl catalyzes monoubiquiti-
nation of EGFR and gp130 (54, 55, 58). Monoubiquitination trig-
gers lysosomal but not proteasomal degradation, and cytoplasmic
proteins are not normally degraded by the lysosome. However,
monoubiquitination can affect the binding or enzymatic proper-
ties of substrates independently of degradation. Indeed, monou-
biquitination of CARMA1 by Cbl-b inhibits binding of CARMA1
to Bcll0 without inducing degradation, thereby inducing NKT
cell anergy (86). In general, Cbl family proteins may stimulate
degradation of transmembrane proteins by the lysosome but have
other effects, not related to degradation, on cytoplasmic proteins.

CADHERIN REGULATION BY Hakai

E-cadherin is the best documented substrate for Hakai (19). Hakai
overexpression increases E-cadherin ubiquitination, endocytosis,
and lysosomal degradation, dependent on tyrosine phosphoryla-
tion and the NVYYY sequence. This sequence is part of a longer
motif that binds p120Ctn, a protein that stabilizes E-cadherin on
the cell surface (87). p120 binds only the nonphosphorylated se-
quence; phosphorylation thus switches E-cadherin from binding
to p120 to binding to Hakai (19, 88-90). Competition between
Hakai, p120Ctn, and Src for the same site makes it difficult to
interpret the effects of E-cadherin mutations and knockdown or
overexpression of Hakai or p120Ctn on E-cadherin stability. Nev-
ertheless, there is good evidence that Hakai promotes E-cadherin
downregulation from adherens junctions and induces the epithe-
lial-mesenchymal transition (EMT) (91). Thus, removing calcium
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induces downregulation of E-cadherin by a series of steps, includ-
ing activation of Cdc42, EGF receptor, and Src; phosphorylation
of E-cadherin; Hakai-dependent ubiquitination; and lysosomal
degradation (92). Overexpressing Hakai, or stimulating E-cad-
herin phosphorylation by activating Src or RTKs, also drives E-
cadherin downregulation and junction disassembly (19, 93).
Transforming growth factor B (TGFf), in combination with Ras
pathway activation, stimulates Hakai gene expression and induces
E-cadherin downregulation and EMT (94). Despite this evidence,
it remains unclear whether endogenous Hakai regulates EMT in
vivo. A Hakai knockout mouse has not been described. Knock-
down of Hakai in cancer cell cultures does not restore cell-cell
junctions but does inhibit cell proliferation, independently of E-
cadherin (95). Hakai expression inversely correlates with E-cad-
herin in some cancers but not others (96). It will be important to
determine whether Hakai is required for EMT during normal em-
bryonic development and cancer progression.

CELL REGULATION BY SOCS-CRL5 COMPLEXES AND BY
SOCS PROTEINS ACTING ALONE

SOCS proteins are best understood as inhibitors of cytokine re-
ceptors and RTKs. Cytokines induce the transcription of SOCSI,
-2,and -3 and CISH genes by a cascade of cytokine receptor phos-
phorylation, JAK kinase binding and activation, and phosphory-
lation of STAT transcription factors (97-99). The phosphorylated
STATs then move to the nucleus and activate expression of many
genes, including SOCS genes. SOCS proteins then provide feed-
back inhibition by binding to cytokine receptors and JAK kinases.
Accordingly, mutations of SOCS1 (100-102) and SOCS3 (103—
105) have major effects on erythropoiesis, the immune system,
and the placenta, while CISH deletion also affects immunity but in
a more subtle way (106).

While SOCS proteins may inhibit signaling by CRL5-depen-
dent downregulation of tyrosine-phosphorylated cytokine recep-
tors or JAKs, several SOCS proteins have major effects that are
independent of CRL5. Specifically, SOCSI and -3 bind poorly to
the remainder of the CRL5 complex (107) and are able to inhibit
signaling through two ubiquitin-independent mechanisms. On
the one hand, they bind through their SH2 domains to phosphor-
ylated cytokine receptors, thereby competing for STAT binding,
and on the other, they bind to and inhibit JAKs via the “kinase
inhibitor regions” (KIRs) immediately N terminal to their SH2
domains (98). Indeed, germ line mutation of the SOCS1 BC-
SOCS box has a much reduced effect on gamma interferon signal-
ing in vivo than a complete SOCS1 gene ablation, suggesting that
CRLS5 binding is largely dispensable for in vivo function (108).
Even so, under some conditions, SOCS1 and -3 can stimulate
ubiquitination; SOCS1 stimulates polyubiquitination and protea-
somal degradation of pY-JAK2 when overexpressed (109), and
SOCS3 can stimulate ubiquitination of JAK2 and gp130 in vitro
(110).

The ubiquitination activities of SOCS1 and -3 may be more
important in suppressing signaling through adhesion receptors
and RTKs (111, 112). Overexpressed SOCS3 binds focal adhesion
kinase (FAK) through a pY in the activation loop and stimulates
FAK turnover (111). This may be important in the adhesive re-
sponse of B lymphocytes to the chemokine CXCL12 (113). As B
cells mature, SOCS3 expression increases and CXCL12-induced
FAK activation and adhesion decrease. SOCS2 has a similar func-
tion in regulating the FAK-like kinase Pyk2 in NK cells (114).
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SOCS?2 expression is induced in NK cells by interleukin 15 (IL-15)
and binds Pyk2 through the activation loop pY. SOCS2 stimulates
Pyk2 ubiquitination and degradation. Accordingly, the knock-
down of SOCS2 caused the accumulation of pY-Pyk2 and blocked
NK cell effector functions.

Perhaps the best-understood target for SOCS2 is the growth
hormone (GH) receptor, which signals through a classical JAK-
STAT mechanism. SOCS2 knockout causes mice to grow exces-
sively, to 40% larger than their littermates, with symptoms of in-
creased GH and insulin-like growth factor 1 (IGF1) signaling
(115). Mutant cells have increased responses to GH but not IGF1,
which is likely activated indirectly (116). Genetic experiments re-
vealed that the SOCS2 phenotype requires increased STAT5b sig-
naling from pY595 of the GHR (116). SOCS2 inhibition of GH
signaling requires the SOCS box and SH2 domain, pointing to a
role for CRL5 and suggesting that SOCS2 brings CRL5 to pY-GHR
and stimulates ubiquitination and degradation (117). Curiously,
overexpression of SOCS2 in a transgenic mouse also stimulated
growth (118), suggesting that SOCS2 both stimulates and inhibits
GH responses. One potential explanation is that overexpressed
SOCS2 (and perhaps SOCS6 and SOCS7) negatively regulates
other SOCS proteins (119). However, it is not clear whether this
mechanism explains the increased growth of SOCS2 transgenic
mice.

SOCS4, -5, -6, and -7 are more widely expressed than SOCS],
-2, and -3 and CISH (112). They have functions beyond cytokine
signaling. For example, both SOCS4 and -5 are induced by EGF
(120). Overexpressed SOCS5 inhibits EGER signaling through its
SOCS box and SH2 domain (120, 121). EGFR degradation is in-
creased, but curiously, both inactive and active receptors are de-
graded (120). This suggests that SOCS5 might downregulate the
EGEFR independently of pY, but the recognition mechanism and
biological significance are unknown. SOCS5 knockout mice have
no apparent phenotype (122), and the SOCS4 mutant phenotype
has not been reported. SOCS4 and -5 are closely related and po-
tentially overlap in function, so double mutation may be necessary
to detect phenotypes.

SOCS6 and -7 may also have overlapping functions. They are
closely related in their SH2 domains, although they diverge con-
siderably in their N-terminal regions. Both SOCS6 and SOCS7
bind to pYVdd sequences, where ¢ is a hydrophobic residue
(123). Both can bind to insulin receptor substrates 2 and 4 (IRS2
and IRS4, respectively) and to the p85 subunit of PI3" kinase.
However, deletion of SOCS6 has little effect on insulin sensitivity
or other reported phenotypes, although the mice were a little
smaller than controls (123). Potential overlapping functions with
SOCS7 may conceal SOCS6 mutant phenotypes. SOCS6 also
binds the juxtamembrane region of the RTK c-Kit, and overex-
pressed SOCS6 inhibits c-Kit activation and shortens its half-life
(42, 124). However, it is unclear whether SOCS6 triggers c-Kit
lysosomal or proteasomal degradation or whether endogenous
SOCS6 regulates c-Kit.

Unlike with SOCS6, deletion of SOCS7 causes many pheno-
types, depending on the particular allele and the genetic back-
ground. Systemic SOCS7 deletion was reported to hyper-activate
mast cells, with increased proinflammatory cytokine production
and severe skin disease (125). SOCS7 deletion caused hydroceph-
alus in other mouse strains (126). Systemic SOCS7 deletion can
also increase insulin sensitivity by stabilizing IRS proteins, which
mediate insulin signaling, in pancreatic B cells (127). Conditional
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knockout of SOCS7 in neural progenitors during brain develop-
ment altered the migration of specific classes of neurons, consis-
tent with hyper-responsiveness to reelin, a migration-stimulatory
factor (128). SOCS?7 binds to Dabl, a protein that is phosphory-
lated at tyrosine in reelin-stimulated neurons, and stimulates
ubiquitination of pY-Dabl in vitro. Dabl protein accumulates in
misplaced neurons in SOCS7 and Rbx2 mutant brains, consistent
with a requirement for SOCS7-CRL5-dependent turnover of pY-
Dabl for normal neuron migration.

CELL REGULATION BY CRL5: STUDIES WITH Cul5 AND Rbx2

Removal of one of the CRL5 invariant subunits, Cul5 or Rbx2,
might be expected to inhibit all SOCS gene functions, unveiling
phenotypes that might be concealed by redundancy when a single
SOCS gene is deleted. However, SOCS proteins are not the only
substrate adaptors for CRL5: approximately 30 other proteins that
lack SH2 domains may also recruit non-pY substrates to CRL5
(129). Removing Cul5 or Rbx2 may affect these nonphosphory-
lated substrates as well as SOCS protein ligands. One way to de-
termine which Cul5 or Rbx2 phenotypes might involve pY-depen-
dent ubiquitination is to focus on phenotypes and substrates that
also require tyrosine kinases.

Along these lines, the removal of Cul5 and/or Rbx2 from fibro-
blasts, epithelial cells, and developing brain increases the level of
active but not inactive Src and Fyn proteins but not mRNA (128,
130-133). This suggests that CRL5 complexes regulate Src/Fyn
stability, but changes in half-life have not been reported.
Knockdown or knockout of Cul5 or Rbx2 also increases fibro-
blast transformation and epithelial cell proliferation and mi-
gration, depending on Src, suggesting that the pY substrates are
involved (130-133). The specific pY substrates suppressed by Cul5
in fibroblasts are not known, but the Src substrate p130Cas is
required for the increased proliferation and migration of Cul5-
deficient epithelial cells (130). p130Cas turnover requires Src,
Cul5, and SOCS6. Phosphorylated p130Cas binds SOCS6. This
suggests that SOCS6-CRL5 inhibits proliferation and migration
by targeting p130Cas for ubiquitination and degradation after it
has been phosphorylated by Src. The full picture is more compli-
cated, however. Combined knockdown of several SOCS proteins
is required to stimulate cell migration to the same extent as Cul5
(130). SOCS7 knockdown stimulates migration of some cancer
celllines (134). In addition, SOCS3 overproduction inhibits kera-
tinocyte proliferation and migration and wound healing in vivo
(135). Therefore, several SOCS proteins probably target multiple
pY proteins for ubiquitination, and together they inhibit cell pro-
liferation and migration.

Such inhibitory effects suggest that SOCS-CRL5s may function
as tumor suppressors. Indeed, SOCS6 is strongly downregulated
in the most-severe cases of prostate cancer (136), hepatocellular
carcinoma (137), lung cancer (138), and gastric cancer (139).
SOCS3 is downregulated in head and neck cancer (140) and Bar-
rett’s adenocarcinoma (141). High expression of SOCS4 and -7 is
associated with improved clinical outcome in breast cancer (142),
loss of SOCSS5 correlates with poor outcome in liver cancer (143),
and decreased SOCS2 expression correlates with shorter recur-
rence-free survival in prostate cancer (136). In addition, SOCS1
and -2 are hypermethylated and underexpressed in more-severe
cases of ovarian and breast cancer (144, 145). These findings are
consistent with tumor suppression by SOCS proteins.

However, it should be noted that some evidence suggests that
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the Rbx2 gene may also function as an oncogene in certain con-
texts. Rbx2 levels increase in some tumors (35). Tan et al. reported
that Rbx2 is required for an Rbx2-Cull-Fbxw7 complex to stim-
ulate ubiquitination and degradation of the tumor suppressor
NF1, consistent with the Rbx2 gene being an oncogene (146). On
the other hand, other research indicates that NF1 is degraded by a
Cul3 mechanism (147) and that Fbxw7 normally binds to Cull-
Rbx1 via Skp1 as opposed to elongin BC (148). It is an open ques-
tion whether Rbx2 may function separately from Cul5.

SUMMARY AND FUTURE PROSPECTS

Despite having different mechanisms for binding to their sub-
strates and associating with E2-ubiquitin conjugates, Cbl, Hakai,
and SOCS proteins all have the potential to promote pY-depen-
dent ubiquitination and provide negative regulation of tyrosine
kinase signaling pathways. This potential has been brought out by
tissue culture and overexpression experiments. However, Cbl and
SOCS proteins, and quite probably Hakai, also have ubiquitin-
independent functions, making it difficult to tease out the biolog-
ical importance of pY-dependent ubiquitination in vivo. Indeed,
for Cbl and SOCS proteins, where knockout data are available,
some of the phenotypes are likely due to loss of ubiquitin-inde-
pendent functions. A continuing challenge for the future is the
identification of bona fide in vivo pY proteins whose ubiquitina-
tion and degradation by pY-dependent ubiquitin ligases is critical
for normal development or homeostasis. Given the low stoichi-
ometry of many tyrosine phosphorylation events, pY-dependent
turnover may not detectably change the bulk abundance or half-
life of a substrate. New approaches for substrate identification will
be key.
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