40 research outputs found

    α8β1 integrin regulates nutrient absorption through an Mfge8-PTEN dependent mechanism.

    Get PDF
    Coordinated gastrointestinal smooth muscle contraction is critical for proper nutrient absorption and is altered in a number of medical disorders. In this work, we demonstrate a critical role for the RGD-binding integrin α8β1 in promoting nutrient absorption through regulation of gastrointestinal motility. Smooth muscle-specific deletion and antibody blockade of α8 in mice result in enhanced gastric antral smooth muscle contraction, more rapid gastric emptying, and more rapid transit of food through the small intestine leading to malabsorption of dietary fats and carbohydrates as well as protection from weight gain in a diet-induced model of obesity. Mechanistically, ligation of α8β1 by the milk protein Mfge8 reduces antral smooth muscle contractile force by preventing RhoA activation through a PTEN-dependent mechanism. Collectively, our results identify a role for α8β1 in regulating gastrointestinal motility and identify α8 as a potential target for disorders characterized by hypo- or hyper-motility

    Inflammatory bone loss associated with MFG‐E8 deficiency is rescued by teriparatide

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154457/1/fsb2fj201701238r-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154457/2/fsb2fj201701238r.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154457/3/fsb2fj201701238r-sup-0001.pd

    MFGE8 links absorption of dietary fatty acids with catabolism of enterocyte lipid stores through HNF4γ-dependent transcription of CES enzymes

    Get PDF
    Enterocytes modulate the extent of postprandial lipemia by storing dietary fats in cytoplasmic lipid droplets (cLDs). We have previously shown that the integrin ligand MFGE8 links absorption of dietary fats with activation of triglyceride (TG) hydrolases that catabolize cLDs for chylomicron production. Here, we identify CES1D as the key hydrolase downstream of the MFGE8-αvβ5 integrin pathway that regulates catabolism of diet-derived cLDs. Mfge8 knockout (KO) enterocytes have reduced CES1D transcript and protein levels and reduced protein levels of the transcription factor HNF4γ. Both Ces1d and Hnf4γ KO mice have decreased enterocyte TG hydrolase activity coupled with retention of TG in cLDs. Mechanistically, MFGE8-dependent fatty acid uptake through CD36 stabilizes HNF4γ protein level; HNF4γ then increases Ces1d transcription. Our work identifies a regulatory network that regulates the severity of postprandial lipemia by linking dietary fat absorption with protein stabilization of a transcription factor that increases expression of hydrolases responsible for catabolizing diet-derived cLDs

    You Say You Want a Resolution (of Fibrosis).

    No full text

    You Say You Want a Resolution (of Fibrosis).

    No full text
    In pathological fibrosis, aberrant tissue remodeling with excess extracellular matrix leads to organ dysfunction and eventual morbidity. Diseases of fibrosis create significant global health and economic burdens and are often deadly. Although fibrosis has traditionally been thought of as an irreversible process, a growing body of evidence demonstrates that organ fibrosis can reverse in certain circumstances, especially if an underlying cause of injury can be removed. This body of evidence has uncovered more and more contributors to persistent and nonresolving tissue fibrosis. Here, we review the present knowledge on resolution of organ fibrosis and restoration of near-normal tissue architecture. We emphasize three critical areas of tissue homeostasis that are necessary for fibrosis resolution, namely, the elimination of matrix-producing cells, the clearance of excess matrix, and the regeneration of normal tissue constituents. In so doing, we also highlight how profibrotic pathways interact with one another and where there may be therapeutic opportunities to intervene and remediate pathological persistent fibrosis

    Essential role for MFG-E8 as ligand for ␣v␤5 integrin in diurnal retinal phagocytosis

    No full text
    International audienc
    corecore