702 research outputs found

    The distribution of localization centers in some discrete random systems

    Full text link
    As a supplement of our previous work, we consider the localized region of the random Schroedinger operators on l2(Zd)l^2({\bf Z}^d) and study the point process composed of their eigenvalues and corresponding localization centers. For the Anderson model, we show that, this point process in the natural scaling limit converges in distribution to the Poisson process on the product space of energy and space. In other models with suitable Wegner-type bounds, we can at least show that any limiting point processes are infinitely divisible

    Central Limit Theorem for a Class of Relativistic Diffusions

    Full text link
    Two similar Minkowskian diffusions have been considered, on one hand by Barbachoux, Debbasch, Malik and Rivet ([BDR1], [BDR2], [BDR3], [DMR], [DR]), and on the other hand by Dunkel and H\"anggi ([DH1], [DH2]). We address here two questions, asked in [DR] and in ([DH1], [DH2]) respectively, about the asymptotic behaviour of such diffusions. More generally, we establish a central limit theorem for a class of Minkowskian diffusions, to which the two above ones belong. As a consequence, we correct a partially wrong guess in [DH1].Comment: 20 page

    A Kolmogorov Extension Theorem for POVMs

    Full text link
    We prove a theorem about positive-operator-valued measures (POVMs) that is an analog of the Kolmogorov extension theorem, a standard theorem of probability theory. According to our theorem, if a sequence of POVMs G_n on Rn\mathbb{R}^n satisfies the consistency (or projectivity) condition Gn+1(A×R)=Gn(A)G_{n+1}(A\times \mathbb{R}) = G_n(A) then there is a POVM G on the space RN\mathbb{R}^\mathbb{N} of infinite sequences that has G_n as its marginal for the first n entries of the sequence. We also describe an application in quantum theory.Comment: 6 pages LaTeX, no figure

    Mod-phi convergence I: Normality zones and precise deviations

    Full text link
    In this paper, we use the framework of mod-ϕ\phi convergence to prove precise large or moderate deviations for quite general sequences of real valued random variables (Xn)nN(X_{n})_{n \in \mathbb{N}}, which can be lattice or non-lattice distributed. We establish precise estimates of the fluctuations P[XntnB]P[X_{n} \in t_{n}B], instead of the usual estimates for the rate of exponential decay log(P[XntnB])\log( P[X_{n}\in t_{n}B]). Our approach provides us with a systematic way to characterise the normality zone, that is the zone in which the Gaussian approximation for the tails is still valid. Besides, the residue function measures the extent to which this approximation fails to hold at the edge of the normality zone. The first sections of the article are devoted to a proof of these abstract results and comparisons with existing results. We then propose new examples covered by this theory and coming from various areas of mathematics: classical probability theory, number theory (statistics of additive arithmetic functions), combinatorics (statistics of random permutations), random matrix theory (characteristic polynomials of random matrices in compact Lie groups), graph theory (number of subgraphs in a random Erd\H{o}s-R\'enyi graph), and non-commutative probability theory (asymptotics of random character values of symmetric groups). In particular, we complete our theory of precise deviations by a concrete method of cumulants and dependency graphs, which applies to many examples of sums of "weakly dependent" random variables. The large number as well as the variety of examples hint at a universality class for second order fluctuations.Comment: 103 pages. New (final) version: multiple small improvements ; a new section on mod-Gaussian convergence coming from the factorization of the generating function ; the multi-dimensional results have been moved to a forthcoming paper ; and the introduction has been reworke

    Palm pairs and the general mass-transport principle

    Get PDF
    We consider a lcsc group G acting properly on a Borel space S and measurably on an underlying sigma-finite measure space. Our first main result is a transport formula connecting the Palm pairs of jointly stationary random measures on S. A key (and new) technical result is a measurable disintegration of the Haar measure on G along the orbits. The second main result is an intrinsic characterization of the Palm pairs of a G-invariant random measure. We then proceed with deriving a general version of the mass-transport principle for possibly non-transitive and non-unimodular group operations first in a deterministic and then in its full probabilistic form.Comment: 26 page

    Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces

    Full text link
    We prove a Miyadera-Voigt type perturbation theorem for strong Feller semigroups. Using this result, we prove well-posedness of the semilinear stochastic equation dX(t) = [AX(t) + F(X(t))]dt + GdW_H(t) on a separable Banach space E, assuming that F is bounded and measurable and that the associated linear equation, i.e. the equation with F = 0, is well-posed and its transition semigroup is strongly Feller and satisfies an appropriate gradient estimate. We also study existence and uniqueness of invariant measures for the associated transition semigroup.Comment: Revision based on the referee's comment

    Weibull-type limiting distribution for replicative systems

    Full text link
    The Weibull function is widely used to describe skew distributions observed in nature. However, the origin of this ubiquity is not always obvious to explain. In the present paper, we consider the well-known Galton-Watson branching process describing simple replicative systems. The shape of the resulting distribution, about which little has been known, is found essentially indistinguishable from the Weibull form in a wide range of the branching parameter; this can be seen from the exact series expansion for the cumulative distribution, which takes a universal form. We also find that the branching process can be mapped into a process of aggregation of clusters. In the branching and aggregation process, the number of events considered for branching and aggregation grows cumulatively in time, whereas, for the binomial distribution, an independent event occurs at each time with a given success probability.Comment: 6 pages and 5 figure

    Countable Random Sets: Uniqueness in Law and Constructiveness

    Full text link
    The first part of this article deals with theorems on uniqueness in law for \sigma-finite and constructive countable random sets, which in contrast to the usual assumptions may have points of accumulation. We discuss and compare two approaches on uniqueness theorems: First, the study of generators for \sigma-fields used in this context and, secondly, the analysis of hitting functions. The last section of this paper deals with the notion of constructiveness. We will prove a measurable selection theorem and a decomposition theorem for constructive countable random sets, and study constructive countable random sets with independent increments.Comment: Published in Journal of Theoretical Probability (http://www.springerlink.com/content/0894-9840/). The final publication is available at http://www.springerlink.co

    Statistical Curse of the Second Half Rank

    Full text link
    In competitions involving many participants running many races the final rank is determined by the score of each participant, obtained by adding its ranks in each individual race. The "Statistical Curse of the Second Half Rank" is the observation that if the score of a participant is even modestly worse than the middle score, then its final rank will be much worse (that is, much further away from the middle rank) than might have been expected. We give an explanation of this effect for the case of a large number of races using the Central Limit Theorem. We present exact quantitative results in this limit and demonstrate that the score probability distribution will be gaussian with scores packing near the center. We also derive the final rank probability distribution for the case of two races and we present some exact formulae verified by numerical simulations for the case of three races. The variant in which the worst result of each boat is dropped from its final score is also analyzed and solved for the case of two races.Comment: 16 pages, 10 figure

    A Recursive Algorithm for Computing Inferences in Imprecise Markov Chains

    Full text link
    We present an algorithm that can efficiently compute a broad class of inferences for discrete-time imprecise Markov chains, a generalised type of Markov chains that allows one to take into account partially specified probabilities and other types of model uncertainty. The class of inferences that we consider contains, as special cases, tight lower and upper bounds on expected hitting times, on hitting probabilities and on expectations of functions that are a sum or product of simpler ones. Our algorithm exploits the specific structure that is inherent in all these inferences: they admit a general recursive decomposition. This allows us to achieve a computational complexity that scales linearly in the number of time points on which the inference depends, instead of the exponential scaling that is typical for a naive approach
    corecore