7 research outputs found

    Experimental Demonstration of Frequency Autolocking an Optical Cavity Using a Time-Varying Kalman Filter

    Get PDF
    We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and to permit the application of linear control techniques. The error signal combined with the transmitted power is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which enables the implementation of an optimal controller. The experimental results validate the controller design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional proportional-integral controller. More important, the time-varying Kalman filtering approach automatically reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear time-invariant controllers cannot achieve. © 2016 American Physical Society

    Pulsed quantum cascade laser based hypertemporal real-time headspace measurements

    Get PDF
    Optical cavity enhancement is a highly desirable process to make sensitive direct-absorption spectroscopic measurements of unknown substances, such as explosive, illicit materials, or other species of interest. This paper reports advancements in the development of real-time cavity ringdown spectroscopy over a wide-bandwidth, with the aim to make heaadspace measurements of molecules at trace levels. We report results of two pulsed quantum cascade systems operating between (1200 to 1320) cm -1 and (1316 to 1613)cm -1 that measure the headspace of nitromethane, acetonitrile, acetone, and nitroglycerin, where the spectra are obtained in less than four seconds and contain at least 150,000 spectral wavelength datapoints

    Experimental Demonstration of Frequency Autolocking an Optical Cavity Using a Time-Varying Kalman Filter

    No full text
    We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and to permit the application of linear control techniques. The error signal combined with the transmitted power is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which enables the implementation of an optimal controller. The experimental results validate the controller design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional proportional-integral controller. More important, the time-varying Kalman filtering approach automatically reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear time-invariant controllers cannot achieve
    corecore