5 research outputs found

    Spot activity of LQ Hydra from photometry between 1988 and 2011

    Get PDF
    Aims. We investigate the spot activity of the young magnetically active main sequence star LQ Hya. Our aims are to identify possible active longitudes, estimate the differential rotation, and study long and short term changes in the activity. Methods. Our analysis is based on 24 years of Johnson V-band photometry of LQ Hya obtained with the T3 0.4 m Automated Telescope at the Fairborn Observatory. We use the previously published continuous period search (CPS) method to model the evolution of the light curve of LQ Hya. The CPS fits a Fourier series model to short overlapping subsets of data. This enables us to monitor the evolution of the light curve and thus the spot configuration of the star with a higher time resolution. Results. We find seasonal variability in the mean level and amplitude of the light curve of LQ Hya. The variability of the light curve amplitude seems not to be cyclic, but the long-term variations in the mean magnitude may be indicative of an approximately 13 year cycle. However, because of the limited length of the observed time series, it is not yet possible to determine whether this structure really represents an activity cycle. Based on fluctuations of the light curve period, we estimate the differential rotation of the star to be small, and the star is potentially very close to a rigid rotator. We search for active longitudes from the inferred epochs of the light curve minima. We find that on time scales up to six months there are typically one or two relatively stable active areas on the star with limited phase migration. On the other hand, on time scales longer than one year, no stable active longitudes have been present except for the period between 2003 and 2009 and possibly also some time before 1995. Neither do we find any signs of flip-flops with a regular period. The mean time scale of change of the light curve during the observation period is determined to be of the same order of magnitude as the estimated convective turnover time for the star

    Spot activity of the RS Canum Venaticorum star σ Geminorum

    Get PDF
    Aims. We model the photometry of RS CVn star σ Geminorum to obtain new information on the changes of the surface starspot distribution, that is, activity cycles, differential rotation, and active longitudes. Methods. We used the previously published continuous period search (CPS) method to analyse V-band differential photometry obtained between the years 1987 and 2010 with the T3 0.4 m Automated Telescope at the Fairborn Observatory. The CPS method divides data into short subsets and then models the light-curves with Fourier-models of variable orders and provides estimates of the mean magnitude, amplitude, period, and light-curve minima. These light-curve parameters are then analysed for signs of activity cycles, differential rotation and active longitudes. Results. We confirm the presence of two previously found stable active longitudes, synchronised with the orbital period Porb = 1960, and found eight events where the active longitudes are disrupted. The epochs of the primary light-curve minima rotate with a shorter period Pmin,1 = 1947 than the orbital motion. If the variations in the photometric rotation period were to be caused by differential rotation, this would give a differential rotation coefficient of α ≥ 0.103. Conclusions. The presence of two slightly different periods of active regions may indicate a superposition of two dynamo modes, one stationary in the orbital frame and the other one propagating in the azimuthal direction. Our estimate of the differential rotation is much higher than previous results. However, simulations show that this may be caused by insufficient sampling in our data

    Periodicity in some light curves of the solar analogue V352 Canis Majoris

    Get PDF
    Aims. We applied the Continuous Period Search (CPS) method to 14 yr of V-band photometry of the active G6.5 solar analog V352 CMa. Our aim was to show that CPS can successfully model the presence or absence of periodicity in low-amplitude light curves. Methods. CPS computes values for the mean brightness, photometric period, amplitude and minimum of selected datasets. We also applied the Power Spectrum Method (PSM) to these datasets and compared the performance of this frequently applied method to that of CPS. Results. We found an apparent 11.7 ± 0.5 yr cycle in the mean brightness. The mean of the individual photometric rotation periods is 7.24 ± 0.22 days. The lower limit for the differential rotation coefficient is |k| \u3e 0.12, assuming that period changes in V352 CMa follow the solar pattern. The Kuiper method detected stable, active longitudes rotating with a period of 7.157 ± 0.002 days, from the epochs of light minimum, but these structures vanished after the year 2009. CPS performed better than the traditional PSM, because the latter assumes a sinusoidal model for the data even when this was not correct

    Algol as Horus in the Cairo Calendar : the possible means and the motives of the observations

    Get PDF
    An ancient Egyptian Calendar of Lucky and Unlucky Days, the Cairo Calendar (CC), assigns luck with the period of 2.850 days. Previous astronomical, astrophysical and statistical analyses of CC support the idea that this was the period of the eclipsing binary Algol three millennia ago. However, next to nothing is known about who recorded Algol's period into CC and especially how. Here, we show that the ancient Egyptian scribes had the possible means and the motives for such astronomical observations. Their principles of describing celestial phenomena as activity of gods reveal why Algol received the title of HorusPeer reviewe

    Algol as Horus in the Cairo Calendar: The Possible Means and the Motives of the Observations

    No full text
    An ancient Egyptian Calendar of Lucky and Unlucky Days, the Cairo Calendar (CC), assigns luck with the period of 2.850 days. Previous astronomical, astrophysical and statistical analyses of CC support the idea that this was the period of the eclipsing binary Algol three millennia ago. However, next to nothing is known about who recorded Algol’s period into CC and especially how. Here, we show that the ancient Egyptian scribes had the possible means and the motives for such astronomical observations. Their principles of describing celestial phenomena as activity of gods reveal why Algol received the title of Horus
    corecore