22,118 research outputs found
Three-body spin-orbit forces from chiral two-pion exchange
Using chiral perturbation theory, we calculate the density-dependent
spin-orbit coupling generated by the two-pion exchange three-nucleon
interaction involving virtual -isobar excitation. From the
corresponding three-loop Hartree and Fock diagrams we obtain an isoscalar
spin-orbit strength which amounts at nuclear matter
saturation density to about half of the empirical value of MeVfm. The
associated isovector spin-orbit strength comes out about a
factor of 20 smaller. Interestingly, this three-body spin-orbit coupling is not
a relativistic effect but independent of the nucleon mass . Furthermore, we
calculate the three-body spin-orbit coupling generated by two-pion exchange on
the basis of the most general chiral -contact interaction. We find
similar (numerical) results for the isoscalar and isovector spin-orbit
strengths and with a strong dominance of
the p-wave part of the -contact interaction and the Hartree
contribution.Comment: 8 pages, 4figure, published in : Physical Review C68, 054001 (2003
Nuclear pairing from chiral pion-nucleon dynamics
We use a recently improved version of the chiral nucleon-nucleon potential at
next-to-next-to-leading order to calculate the pairing gap in
isospin-symmetric nuclear matter. The pairing potential consists of the
long-range one- and two-pion exchange terms and two short-distance NN-contact
couplings. We find that the inclusion of the two-pion exchange at
next-to-next-to-leading order reduces substantially the cut-off dependence of
the pairing gap determined by solving a regularised BCS equation. Our
results are close to those obtained with the universal low-momentum
nucleon-nucleon potential or the phenomenological Gogny D1S
force.Comment: 9 pages, 3 eps figures, submitted to PR
Making electromagnetic wavelets
Electromagnetic wavelets are constructed using scalar wavelets as
superpotentials, together with an appropriate polarization. It is shown that
oblate spheroidal antennas, which are ideal for their production and reception,
can be made by deforming and merging two branch cuts. This determines a unique
field on the interior of the spheroid which gives the boundary conditions for
the surface charge-current density necessary to radiate the wavelets. These
sources are computed, including the impulse response of the antenna.Comment: 29 pages, 4 figures; minor corrections and addition
Recommended from our members
Eleutherodactylus martinicensis
Number of Pages: 4Integrative BiologyGeological Science
Recommended from our members
Security Clearance Process: Answers to Frequently Asked Questions
[Excerpt] The security clearance process is designed to determine the trustworthiness of an individual prior to granting him or her access to classified national security information. The process has evolved since the early 1950s, with antecedents dating to World War II. This report highlights some of the fundamental aspects of the process by providing answers to frequently asked questions
Global stability analysis of birhythmicity in a self-sustained oscillator
We analyze global stability properties of birhythmicity in a self-sustained
system with random excitations. The model is a multi-limit cycles variation of
the van der Pol oscillatorintroduced to analyze enzymatic substrate reactions
in brain waves. We show that the two frequencies are strongly influenced by the
nonlinear coefficients and . With a random excitation, such as
a Gaussian white noise, the attractor's global stability is measured by the
mean escape time from one limit-cycle. An effective activation energy
barrier is obtained by the slope of the linear part of the variation of the
escape time versus the inverse noise-intensity 1/D. We find that the
trapping barriers of the two frequencies can be very different, thus leaving
the system on the same attractor for an overwhelming time. However, we also
find that the system is nearly symmetric in a narrow range of the parameters.Comment: 17 pages, 8 figures, to appear on Choas, 201
Raman spectroscopy with ultrashort coherent excitation. Narrowing of spectral lines beyond the dephasing linewidth
Spectroscopists are constantly faced with the task of improved spectral resolution. Two points are of major interest: (i) The precise frequency of the quantized transition and (ii) the detection of new neighboring transitions. Besides experimental factors the ultimate spectral resolution is determined by the inherent linewidth of the transition. Optical spectroscopists have to deal with different line-broadening processes; for instance with the Doppler effect or with collision broadening in gases, with dephasing processes in condensed systems and with the population relaxation which results in the natural linewidth. In recent years, different novel techniques have been devised which provide spectral resolution beyond the transition linewidth. For instance, Doppler broadening can be eliminated by saturation spectroscopy or by two counter-propagating beams for two-photon transitions/I/. Even measurements beyond the natural linewidth have been performed taking biased signals from the fluorescent decay /2-5/. Techniques have been proposed where the difference between the decay rates of the two states rather than their sum determines the linewidth /6,7/, and narrowing of the natural linewidth by decaying-pulse excitation has been discussed /8/. Very recently, we have demonstrated substantial line narrowing of Raman type transitions in condensed phases /9-11/. The lines were broadened by vibrational dephasing. New information was obtained in congestedspectral regions
Determination of the - mixing angle
We extract - mixing angle and the ratios of decay
constants of light pseudoscalar mesons , and using
recently available BaBar measurements on -photon and -photon
transition form factors and more accurate experimental data for the masses and
two-photon decay widths of the light pseduoscalar mesons.Comment: 5 pages, revtex, no figures, accepted for publication as a Brief
Report in Physical Review
Applications of computer-graphics animation for motion-perception research
The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events
- …