1,731 research outputs found

    Supersymmetry Changing Bubbles in String Theory

    Get PDF
    We give examples of string compactifications to 4d Minkowski space with different amounts of supersymmetry that can be connected by spherical domain walls. The tension of these domain walls is tunably lower than the 4d Planck scale. The ``stringy'' description of these walls is known in terms of certain configurations of wrapped Dirichlet and NS branes. This construction allows us to connect a variety of vacua with 4d N=4,3,2,1 supersymmetry.Comment: 11 pages, harvmac, no figures, reference added, minor correction

    Volume Stabilization and the Origin of the Inflaton Shift Symmetry in String Theory

    Full text link
    The main problem of inflation in string theory is finding the models with a flat potential, consistent with stabilization of the volume of the compactified space. This can be achieved in the theories where the potential has (an approximate) shift symmetry in the inflaton direction. We will identify a class of models where the shift symmetry uniquely follows from the underlying mathematical structure of the theory. It is related to the symmetry properties of the corresponding coset space and the period matrix of special geometry, which shows how the gauge coupling depends on the volume and the position of the branes. In particular, for type IIB string theory on K3xT^2/Z with D3 or D7 moduli belonging to vector multiplets, the shift symmetry is a part of SO(2,2+n) symmetry of the coset space [SU(1,1)/ U(1)]x[SO(2,2+n)/(SO(2)x SO(2+n)]. The absence of a prepotential, specific for the stringy version of supergravity, plays a prominent role in this construction, which may provide a viable mechanism for the accelerated expansion and inflation in the early universe.Comment: 12 page

    De Sitter stability in quadratic gravity

    Full text link
    Quadratic curvature corrections to Einstein-Hilbert action lead in general to higher-order equations of motion, which can induced instability of some unperturbed solutions of General Relativity. We study conditions for stability of de Sitter cosmological solution. We argue that simple form of this condition known for FRW background in 3+1 dimensions changes seriously if at least one of these two assumptions is violated. In the present paper the stability conditions for de Sitter solution have been found for multidimensional FRW background and for Bianchi I metrics in 3+1 dimensions.Comment: 12 pages with 4 figures; references adde

    Multi-Throat Brane Inflation

    Full text link
    We present a scenario where brane inflation arises more generically. We start with D3 and anti-D3-branes at the infrared ends of two different throats. This setup is a natural consequence of the assumption that in the beginning we have a multi-throat string compactification with many wandering anti-D3-branes. A long period of inflation is triggered when D3-branes slowly exit the highly warped infrared region, under a potential generically arising from the moduli stabilization. In this scenario, the usual slow-roll conditions are not required, and a large warping is allowed to incorporate the Randall-Sundrum model.Comment: 11 pages; v3: minor revision, PRD versio

    Supersymmetric Three-cycles and (Super)symmetry Breaking

    Get PDF
    We describe physical phenomena associated with a class of transitions that occur in the study of supersymmetric three-cycles in Calabi-Yau threefolds. The transitions in question occur at real codimension one in the complex structure moduli space of the Calabi-Yau manifold. In type IIB string theory, these transitions can be used to describe the evolution of a BPS state as one moves through a locus of marginal stability: at the transition point the BPS particle becomes degenerate with a supersymmetric two particle state, and after the transition the lowest energy state carrying the same charges is a non-supersymmetric two particle state. In the IIA theory, wrapping the cycles in question with D6-branes leads to a simple realization of the Fayet model: for some values of the CY modulus gauge symmetry is spontaneously broken, while for other values supersymmetry is spontaneously broken.Comment: 10 pages, harvmac big; v2, minor change

    Interpolating from Bianchi Attractors to Lifshitz and AdS Spacetimes

    Get PDF
    We construct classes of smooth metrics which interpolate from Bianchi attractor geometries of Types II, III, VI and IX in the IR to Lifshitz or AdS2×S3AdS_2 \times S^3 geometries in the UV. While we do not obtain these metrics as solutions of Einstein gravity coupled to a simple matter field theory, we show that the matter sector stress-energy required to support these geometries (via the Einstein equations) does satisfy the weak, and therefore also the null, energy condition. Since Lifshitz or AdS2×S3AdS_2 \times S^3 geometries can in turn be connected to AdS5AdS_5 spacetime, our results show that there is no barrier, at least at the level of the energy conditions, for solutions to arise connecting these Bianchi attractor geometries to AdS5AdS_5 spacetime. The asymptotic AdS5AdS_5 spacetime has no non-normalizable metric deformation turned on, which suggests that furthermore, the Bianchi attractor geometries can be the IR geometries dual to field theories living in flat space, with the breaking of symmetries being either spontaneous or due to sources for other fields. Finally, we show that for a large class of flows which connect two Bianchi attractors, a C-function can be defined which is monotonically decreasing from the UV to the IR as long as the null energy condition is satisfied. However, except for special examples of Bianchi attractors (including AdS space), this function does not attain a finite and non-vanishing constant value at the end points.Comment: 37 pages, 12 figures, The comment regarding the behavior of C-function for general Bianchi Types appearing in IR or UV clarified, the relation of Type IX with AdS2×S3AdS_2 \times S^3 for λ=1\lambda=1 made more precise and a comment regarding type V added in the conclusio

    Self-tuning flat domain walls in 5d gravity and string theory

    Get PDF
    We present Poincare invariant domain wall (``3-brane'') solutions to some 5-dimensional effective theories which can arise naturally in string theory. In particular, we find theories where Poincare invariant solutions exist for arbitrary values of the brane tension, for certain restricted forms of the bulk interactions. We describe examples in string theory where it would be natural for the quantum corrections to the tension of the brane (arising from quantum fluctuations of modes with support on the brane) to maintain the required form of the action. In such cases, the Poincare invariant solutions persist in the presence of these quantum corrections to the brane tension, so that no 4d cosmological constant is generated by these modes.Comment: 21 pages, harvmac bi

    The moduli problem at the perturbative level

    Full text link
    Moduli fields generically produce strong dark matter -- radiation and baryon -- radiation isocurvature perturbations through their decay if they remain light during inflation. We show that existing upper bounds on the magnitude of such fluctuations can thus be translated into stringent constraints on the moduli parameter space m_\sigma (modulus mass) -- \sigma_{inf} (modulus vacuum expectation value at the end of inflation). These constraints are complementary to previously existing bounds so that the moduli problem becomes worse at the perturbative level. In particular, if the inflationary scale H_{inf}~10^{13} GeV, particle physics scenarios which predict high moduli masses m_\sigma > 10-100 TeV are plagued by the perturbative moduli problem, even though they evade big-bang nucleosynthesis constraints.Comment: 4 pages, 3 figures (revtex) -- v2: an important correction on the amplitude/transfer of isocurvature modes at the end of inflation, typos corrected, references added, basic result unchange

    Extremal Horizons with Reduced Symmetry: Hyperscaling Violation, Stripes, and a Classification for the Homogeneous Case

    Get PDF
    Classifying the zero-temperature ground states of quantum field theories with finite charge density is a very interesting problem. Via holography, this problem is mapped to the classification of extremal charged black brane geometries with anti-de Sitter asymptotics. In a recent paper [1], we proposed a Bianchi classification of the extremal near-horizon geometries in five dimensions, in the case where they are homogeneous but, in general, anisotropic. Here, we extend our study in two directions: we show that Bianchi attractors can lead to new phases, and generalize the classification of homogeneous phases in a way suggested by holography. In the first direction, we show that hyperscaling violation can naturally be incorporated into the Bianchi horizons. We also find analytical examples of "striped" horizons. In the second direction, we propose a more complete classification of homogeneous horizon geometries where the natural mathematics involves real four-algebras with three dimensional sub-algebras. This gives rise to a richer set of possible near-horizon geometries, where the holographic radial direction is non-trivially intertwined with field theory spatial coordinates. We find examples of several of the new types in systems consisting of reasonably simple matter sectors coupled to gravity, while arguing that others are forbidden by the Null Energy Condition. Extremal horizons in four dimensions governed by three-algebras or four-algebras are also discussed.Comment: 58 pages, 1 figure and 1 cartoon. v2: references adde

    Gaugino Condensation and Nonperturbative Superpotentials in Flux Compactifications

    Get PDF
    There are two known sources of nonperturbative superpotentials for K\"ahler moduli in type IIB orientifolds, or F-theory compactifications on Calabi-Yau fourfolds, with flux: Euclidean brane instantons and low-energy dynamics in D7 brane gauge theories. The first class of effects, Euclidean D3 branes which lift in M-theory to M5 branes wrapping divisors of arithmetic genus 1 in the fourfold, is relatively well understood. The second class has been less explored. In this paper, we consider the explicit example of F-theory on K3×K3K3 \times K3 with flux. The fluxes lift the D7 brane matter fields, and stabilize stacks of D7 branes at loci of enhanced gauge symmetry. The resulting theories exhibit gaugino condensation, and generate a nonperturbative superpotential for K\"ahler moduli. We describe how the relevant geometries in general contain cycles of arithmetic genus χ1\chi \geq 1 (and how χ>1\chi > 1 divisors can contribute to the superpotential, in the presence of flux). This second class of effects is likely to be important in finding even larger classes of models where the KKLT mechanism of moduli stabilization can be realized. We also address various claims about the situation for IIB models with a single K\"ahler modulus.Comment: 24 pages, harvmac, no figures, references adde
    corecore