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1 Introduction

Recent developments suggest that fascinating connections might exist between the study

of gravity and condensed matter physics, or more specifically the study of strongly coupled

field theories at finite density. See [1–4] for reviews of this subject with additional references.

On the gravity side, motivated by the varied and beautiful phases found in nature, new

brane solutions have been discovered. These branes have new kinds of hair, or have horizons

with reduced symmetry. For example, see [5–8] for discussions on how black hole no-hair

theorems can be violated in AdS space in the context of holographic superconductivity; [9–

12] for discussions of how emergent horizons with properties reflecting dynamical scaling

in the dual field theory (“Lifshitz solutions”) can arise; and [13–21] for discussions of

horizons exhibiting both dynamical scaling and hyperscaling violation.1 The earliest work

mostly focused on horizons with translational and rotational symmetry, but more recently

examples of black brane horizons dual to field theories with further reduced space-time

symmetries have been discussed in e.g. [29–57].

Extremal branes are particularly interesting, since they correspond to ground states of

the dual field theory in the presence of a chemical potential or doping. Their near-horizon

1Embeddings of such solutions in string theory have also been discussed in many papers, such as [19–28].
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geometries often exhibit a type of attractor behavior, and as a result, are quite universal

and independent of many details. There is a considerable body of work regarding the

attractor mechanism, starting with the pioneering work in [58]. A recent review with addi-

tional references is [59]. For studies of the attractor mechanism in the non-supersymmetric

context, which is the situation of relevance here, see for instance [60–65].

Of particular interest for this paper are the brane solutions studied in [38, 39], which

correspond to phases of matter which are homogeneous but not isotropic. It was shown that

in 4 + 1 dimensions, such brane solutions can be classified using the Bianchi classification

developed earlier for studying homogeneous cosmologies. In [38, 39], it was found that for

extremal black branes of this kind, the near-horizon geometry itself often arises as an exact

solution for a system consisting of Einstein gravity coupled to (simple) suitable matter in

the presence of a negative cosmological constant. These near-horizon solutions were given

the name “Bianchi attractors”.

The attractor nature mentioned above makes the Bianchi attractor geometries more

universal, and therefore in many ways more interesting, than the complete extremal black

brane solutions from which they arise in the IR. However, some examples of more complete

solutions, interpolating between asymptotically AdS space and Bianchi attractors of various

Types, are well worth constructing and could lead to important insights.

For example, Bianchi attractors have a non-trivial geometry along the field theory

directions. It is therefore worth asking whether these attractors can arise in situations

where the dual field theory lives in flat space, as opposed to the more baroque possibility

that the UV field theory itself must be placed in a non-trivial geometry of the appropriate

Bianchi Type. This question maps to constructing interpolating extremal black brane

solutions and asking whether the non-normalizable deformations for the metric can be

asymptotically turned off near the AdS boundary which lies at the ultraviolet end.

For one case, Bianchi Type VII, an explicit interpolating solution of this type was

indeed found in [38]. More precisely, it was seen that, in the presence of suitable matter, a

solution exists which interpolates between the Bianchi attractor region and AdS2×R3. The

latter in turn is well known to arise as the near-horizon region of an extremal Reissner-

Nordstrom black brane which is asymptotically AdS5. In this way, it was shown that

Bianchi Type VII can arise as the near-horizon limit of an asymptotically AdS brane.

In this solution, no non-normalizable mode for the metric is turned on near the AdS5

boundary, and therefore the field theory lives in flat 3 + 1 dimensional spacetime. Sources

are turned on for some of the field theory operators (but none dual to non-normalizable

metric modes), and these operators are responsible for the breaking of UV symmetries that

leads to Bianchi Type VII.

For the other Bianchi classes, finding such interpolating extremal brane solutions has

proved difficult so far. The main complication is a calculational one. It is easy to write

down a continuous and sufficiently smooth metric which interpolates between the near-

horizon region and asymptotic AdS space, with no non-normalizable metric deformations

turned on, for any of the other Bianchi classes. But it is not easy to find such a metric

as an explicit solution to the Einstein equations for gravity coupled to some simple matter

field theory. The symmetries of Type VII are a subgroup of the three translations and the
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rotations in R3; this allows the equations for the full interpolating solution in the Type

VII case to be reduced to algebraic ones, and solved. On the other hand, the symmetries

in the other Bianchi Types cannot be embedded in those of R3, and thus the equations

cannot be reduced to merely algebraic ones.

Here, we take a partial step towards finding such interpolating solutions for some

of the other Bianchi classes. We start with a particular smoothly varying metric which

interpolates between the near-horizon region and Lifshitz spacetime. The metric is chosen

so that the non-normalizable deformations of the metric near the Lifshitz boundary are

turned off. While we do not obtain these metrics as solutions of Einstein gravity coupled to

a specific simple matter field theory, we demonstrate that were they to arise as solutions,

the required matter would satisfy the weak energy condition. In this way, we establish that

there is no fundamental barrier, at least at the level of reasonable energy conditions, to

having such an interpolating solution.

In turn, it is well known that Lifshitz spacetimes, now thought of as the IR end, can be

connected to AdS space in the UV. Solutions of this type to Einstein’s equations coupled

with reasonable matter satisfying the energy conditions have been obtained, see, e.g., [11,

12, 25, 27, 28, 66–70]. In these solutions often no non-normalisable metric deformations are

turned on in the AdS region, although a source for other operators can be present. Taking

these solutions together with the interpolating metrics we study, one can then conclude

that interpolating geometries exist which connect some of the Bianchi classes to asymptotic

AdS space. These interpolations do not violate the energy conditions, and they do not have

any non-normalisable deformations for the metric turned on in the asymptotic AdS region.

This establishes one of the main results of our paper.

Hopefully, our result will provide motivation for finding solutions of Einstein’s equa-

tions sourced by suitable specific matter field theories, which interpolate between the

Bianchi classes and Lifshitz or AdS spaces, in the near future. The weak energy con-

dition implies the null energy condition. Thus, our results also imply that no violations of

the null energy condition are necessary for the required interpolations. While violations of

the null-energy condition are known to be possible, they usually require either quantum

effects or exotic objects like orientifold planes in string theory. Our result suggests that

these are not required, and that standard matter fields should suffice as sources in con-

structing these interpolating solutions. Once constructed, these solutions will allow us to

ask whether, from the field theory perspective, the symmetries of various Bianchi classes

can emerge in the IR, either spontaneously or in response to some suitable source not

including the metric.

Near the end of the paper, in §6, we also explore the existence of C-functions in flows

between Bianchi attractors. This section can be read independently of the earlier parts

of the paper. We find that if the matter sourcing the geometry satisfies the null energy

condition, a function does exist, for a large class of flows, which is monotonically decreasing

from the UV to the IR. But unless the attractors meet a special condition, this function

does not attain a finite, non-vanishing constant value at the end points. We also show that

the area element of the three-dimensional submanifold generated by the Bianchi isometries

in the attractor spacetimes monotonically decreases from the UV to the IR.
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The plan of the paper is as follows. In §2, we discuss the weak and null energy

conditions. §3 outlines the general procedure we follow in constructing the interpolating

metrics and illustrates this for the particular case of Bianchi Type II. Bianchi Type VI and

the closely related classes of Type III and V are discussed in §4, and Type IX, for which

the interpolation is to AdS2 × S3, is discussed in §5. In §6, we explore the existence of a

C-function. We end with some conclusions in §7. The appendix contains a more complete

discussion of the energy conditions.

2 Energy conditions

We will work in 4 + 1 dimensional spacetime and adopt the mostly positive convention for

the metric, so that the flat metric is ηµν = diag(−1, 1, 1, 1, 1).

Consider a coordinate system xµ, µ = 0, 1, . . . , d, with the metric being gµν . We denote

the stress energy tensor, as in the standard notation, by Tµν , and let nµ be a null vector,

with nµnνg
µν = 0. Then the null energy condition (NEC) is satisfied iff

Tµνn
µnν ≥ 0 (2.1)

for any future directed null vector, see [71, 72]. Here we will only consider spacetimes

which are time reversal invariant, i.e., with a t → −t symmetry. For such spacetimes the

requirement of nµ being future directed can be dropped.

For the purposes of our analysis it is convenient to state this condition as follows.

Tµν can be regarded as a linear operator acting on tangent vectors. Let the orthonor-

mal eigenvectors of this operator be denoted by {u0, u1, u2, u3, u4}, with eigenvalues,

{λ0, λ1, λ2, λ3, λ4} respectively. Note that orthonormality implies 〈ua, ub〉 ≡ uaµubνg
µν =

ηab, so that u0 is time-like and the other eigenvectors, uc, c = 1, . . . , 4, are space-like.

Then, as discussed in appendix A, the NEC requires that

− λ0 + λc ≥ 0 (2.2)

for c = 1, 2, 3, 4.

In contrast, the weak energy condition (WEC) requires that

Tµνu
µuν ≥ 0, (2.3)

for any future directed time-like vector uµ [71, 72]. As in the discussion of the NEC above,

for the time reversal invariant backgrounds we consider here, the requirement that uµ is

future directed need not be imposed. In terms of the eigenvalues {λ0, λc} of Tµν , this leads

to two conditions:

λ0 ≤ 0 (2.4)

λc − λ0 ≥ 0, for c = 1, 2, 3, 4. (2.5)

From eq. (2.5) and eq. (2.2) we see that the weak energy condition implies the null

energy condition. Thus, the weak energy condition is stronger.

– 4 –



J
H
E
P
0
3
(
2
0
1
4
)
0
7
4

We make two final comments before we end this section. In this paper, we will follow

the conventions of [38], where the action takes the form (see equation (3.4) of [38])

S =

∫
d5x
√
−g {R+ Λ + · · · }. (2.6)

The ellipsis on the r.h.s. denotes the contribution to the action from matter fields. In

these conventions, AdS5 spacetime is a solution to the Einstein equations, in the absence

of matter, for Λ > 0. It follows then that the cosmological constant required for AdS

space violates eq. (2.4) and thus the weak energy condition, but it satisfies eq. (2.2) as an

equality, thereby meeting the null energy condition.

Secondly, we have assumed above that the linear operator Tµν is diagonalizable and that

its eigenvalues are real. These properties do not have to be true, since Tµν , unlike, Tµν , need

not be symmetric, and moreover since the inner product is Lorentzian (see [73]). However,

for the interpolations we consider, it will turn out that Tµν is indeed diagonalizable with

real eigenvalues and therefore we will not have to consider this more general possibility.

3 Outline of procedure

In this section, we will outline the basic ideas that we follow to find metrics with the required

properties that interpolate between the near-horizon attractor region and an asymptotic

Lifshitz spacetime. We will illustrate this procedure in the context of one concrete example,

which we will take to be Bianchi Type II. Holography in this particular Bianchi attractor

was recently studied in depth in [56].

The metrics we consider in general have the form

ds2 = −gtt(r)dt2 + grr(r)dr
2 +

∑
i,j=1,2,3

gij(r, x
i)dxidxj . (3.1)

In the Bianchi attractor region which occurs in the deep IR, for r → −∞, the metric takes

the form,

ds2
B = −e2βtrdt2 + dr2 +

∑
i=1,2,3

e2βir(ωi)2, (3.2)

where ωi are one-forms invariant under the Bianchi symmetries generated by the Killing

fields ξi, i = 1, 2, 3 (More generally, off-diagonal terms are also allowed in eq. (3.2) but we

will not consider this possibility here.) The commutation relations of the Killing vectors2

[ξi, ξj ] = Ckijξk (3.3)

give rise to the corresponding Bianchi algebra.

In the far UV on the other hand, which occurs for r → ∞, the metric becomes of

Lifshitz form,

ds2
L = −e2β̃trdt2 + dr2 + e2β̃r

∑
i=1,2,3

dx2
i . (3.4)

2The Bianchi classification is described in [74, 75], including the symmetry generators and invariant

one-forms; also see section 2 and appendix A of [38] for a general discussion of this classification more akin

to our purpose.
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Here for simplicity, we only consider the case where all the spatial directions have the same

scaling exponent, β̃, more generally this exponent can be different for the different spatial

directions. Also, to avoid unnecessary complications we take the exponent in the time

direction β̃t in the Lifshitz region to satisfy the condition

β̃t = βt, (3.5)

where βt is the value for the exponent in the Bianchi attractor region, eq. (3.2). The metric

eq. (3.4) then becomes

ds2
L = −e2βtrdt2 + dr2 + e2β̃r

∑
i=1,2,3

(dxi)2. (3.6)

The metric which interpolates between these two regions is taken to have the form

ds2 =

(
1− tanhσr

2

)
ds2
B +

(
1 + tanhσr

2

)
ds2
L, (3.7)

where ds2
B and ds2

L are defined in eq. (3.2) and eq. (3.4) respectively. σ is a positive

constant which characterizes how rapid or gradual the interpolation is. One can show, and

this will become clearer in the specific examples we consider below, that as long as σ is

sufficiently big the metric becomes of the Bianchi attractor form as r → −∞. Also, for

sufficiently large σ the metric becomes of Lifshitz type as r →∞. More correctly, for this

latter statement to be true the limit r →∞ must be taken keeping the spatial coordinates

xi, i = 1, 2, 3 fixed. We will also comment on this order of limits in more detail below.

We should emphasize that we do not obtain the interpolating metric in eq. (3.7) as

a solution to Einstein’s equations coupled to suitable matter. Instead, what we will do is

to construct from the metric, via the Einstein equations, a stress energy tensor for matter

and then examine whether this stress energy satisfies the energy conditions.

Below, we will analyze cases where the interpolation is from attractor geometries of

Bianchi Type II, III, V, or VI to Lifshitz geometry. In addition, using a different strategy,

we will also consider the interpolation from Type IX to AdS2 × S3.

3.1 More details for the Type II case

Let us now give more details for how the analysis proceeds in the Type II case.

It will be convenient in the analysis to take the Bianchi attractor geometry and the

Lifshitz geometry which arise in the IR and UV ends of the interpolation as solutions of

Einstein’s equations coupled to reasonable matter. This ensures that the energy conditions

will be satisfied at least asymptotically. In fact the Bianchi attractor geometry and the

Lifshitz geometry can both arise as solutions in a system of gravity coupled to a massive

Abelian gauge field in the presence of a cosmological constant, with an action of the form,

S =

∫
d5x
√
−g
(
R+ Λ− 1

4
F 2 − 1

4
m2A2

)
. (3.8)

The Type II solutions which arise from this action were discussed in [38] and we will

mostly follow the same conventions here. The invariant one-forms for Type II are given by

ω1 = dy − x dz, ω2 = dz, ω3 = dx. (3.9)

– 6 –
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The solutions of Type II obtained from eq. (3.8) were described in eq. (4.2), (4.3) and

(4.10), (4.11) in [38]. The metric and gauge field in these solutions take the form

ds2
B = R2[dr2 − e2βtrdt2 + e2(β2+β3)r(ω1)2 + e2β2r(ω2)2 + e2β3r(ω3)2] (3.10)

and

A =
√
At e

βtrdt. (3.11)

These solutions are characterized by five parameters, R, βt, β2, β3, At. The equations of

motion give rise to five independent equations which determine these parameters in terms

of m2,Λ. For our purposes it will be convenient to work in units where R = 1 and to

use the equations of motion to express βt, β1, β2, At and m2 in terms of Λ. The resulting

relations are,

βt = v, (3.12)

β2 = β3 = −(3− Λ + u)v

36− 8Λ
, (3.13)

m2 =
8

11
(6− Λ + u), (3.14)

At =
−11v2 + 3u

18− 4Λ
, (3.15)

where

u =
√
−63 + 10Λ + Λ2,

v =

[
−81 + 19Λ + 3u

22

] 1
2

.

Demanding that At,m
2, βt, β2, β3 be positive and u be real, we get Λ > 9

2 . The Lifshitz

metric which we are interested in near the boundary also arises as a solution from the

action in eq.(3.8). The metric and gauge field in this solution take the form

ds2
L = dr2 − e2βtrdt2 + e2β̃rdx2 + e2β̃rdy2 + e2β̃rdz2 (3.16)

and

A =
√
At e

βtrdt. (3.17)

The solution is characterized by three parameters, βt, β̃, At which are determined in terms

of m2 and Λ. For our purposes it is more convenient to express β̃, At and m2 in terms of

βt and Λ. These relations, which arise due to the equations of motion, are

β̃ =
1

9

(
−βt +

√
−8β2

t + 9Λ

)
, (3.18)

m2 =
2

3
βt

(
−βt +

√
−8β2

t + 9Λ

)
, (3.19)

At =
2

9

(
10− 1

βt

√
−8β2

t + 9Λ

)
. (3.20)
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In order to ensure that β̃, At,m
2 are all nonnegative, we must have βt > 0, β2

t ≤ Λ ≤ 12β2
t .

We will consider Lifshitz metric where these conditions hold.

The Type II and Lifshitz solutions we consider correspond to the same value of the

cosmological constant. It will also be convenient to take the exponent βt along the time

direction in the Type II and Lifshitz cases to be the same as discussed in eq. (3.5). This

will mean that the mass parameter m2 for the Type II and Lifshitz cases will be different

in general.

A negative cosmological constant (in our conventions Λ > 0 ) violates the weak energy

condition, thus in studying the violations of this condition it is useful to separate the

contributions of the cosmological constant from the matter in the stress energy. Since

the two asymptotic geometries we consider arise as solutions with the same value of the

cosmological constant we can consistently take the cosmological constant to have this same

value throughout the interpolation. Using the Einstein equations we can then define a

matter stress tensor, minus the cosmological constant, and then study its behavior with

respect to the weak energy condition. The null energy condition, in contrast to the weak

energy condition, does not receive contributions from the cosmological constant, and so

for studying its possible violations such a separation between matter and the cosmological

constant components is not necessary.

We now turn to the full interpolating metric. As discussed in the previous subsection

this takes the form

ds2 = dr2 − e2βtrdt2

+

[(
1− tanhσr

2

)
e2β3r +

(
1 + tanhσr

2

)
e2β̃r

]
dx2

+

[(
1− tanhσr

2

)
e2(β2+β3)r +

(
1 + tanhσr

2

)
e2β̃r

]
dy2

+

[(
1− tanhσr

2

)
(x2e2(β2+β3)r + e2β2r) +

(
1 + tanhσr

2

)
e2β̃r

]
dz2

− x
(

1− tanhσr

2

)
e2(β2+β3)r(dy ⊗ dz + dz ⊗ dy).

(3.21)

We note that in the limit of r becoming very large, the above may be approximated by

ds2 = dr2 − e2βtrdt2 +
[
e2(β3−σ)r + e2β̃r

]
dx2

+
[
e2(β2+β3−σ)r + e2β̃r

]
dy2

+
[
x2e2(β2+β3−σ)r + e2(β2−σ)r + e2β̃r

]
dz2

− xe2(β2+β3−σ)r(dy ⊗ dz + dz ⊗ dy).

(3.22)

To ensure that this metric approaches the Lifshitz geometry as r →∞, with exponentially

small corrections, the terms arising from the Lifshitz metric, eq. (3.16), must dominate in

every component of the metric. It is easy to see that this condition is met when

σ > β2 + β3. (3.23)
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Similarly, one finds that the conditions requiring the metric to become of the Bianchi II

type, eq. (3.10), in the IR are also met when σ satisfies the condition in eq. (3.23).

Actually, the r → +∞ limit is a bit subtle. As one can see from the coefficient of the

dz2 and the (dy ⊗ dz + dz ⊗ dy) terms in eq. (3.22), eq. (3.23) ensures that the metric

becomes of Lifshitz type when r →∞, as long as x is constant, or at least for |x| growing

sufficiently slowly in this limit. This is in fact the limit we will consider in our discussion.

Taking the limit in this way is well motivated physically. It is quite reasonable to place

the dual field theory whose properties we are interested in studying in a box of finite size.

In fact this is always the case in any experimental situation. In such a finite box the range

of the spatial coordinates is finite ensuring that the r → ∞ limit is of the required type.

As long as the box is sufficiently big, compared to the other scales, e.g. the temperature,

the properties of the system, e.g. its thermodynamics, do not depend in a sensitive way on

the size of the box.

While the requirement for getting the correct asymptotic behavior imposes a lower

bound on σ, eq. (3.23), meeting the energy conditions give rise to an upper bound on σ,

as we will see below. It will turn out that there is a finite region for the allowed values of

σ between these two bounds, for the Type II case, and by choosing σ to lie in this region

an acceptable interpolation meeting the energy conditions can be obtained.

3.1.1 Energy conditions for the Type II interpolation

With the interpolating metric in hand, we can now test the various energy conditions. We

do so numerically.

From the metric, eq. (3.21), we define a stress tensor, assuming that the Einstein

equations are valid. This gives

Tµν ≡ Rµν −
1

2
gµνR. (3.24)

(We set κ = 8πGN = 1.) This stress energy tensor in turn is separated into a matter and

a cosmological constant contribution. With our conventions, eq. (2.6), we get

Tµν =
Λ

2
gµν + T (matter)

µν . (3.25)

Combining these two equations gives

T (matter)
µν = Rµν −

1

2
gµνR−

Λ

2
gµν . (3.26)

To analyze whether the energy conditions are valid, we first note that owing to the form we

have chosen for the interpolating metric, eq. (3.21), T
(matter)µ
ν is block diagonal. Therefore,

– 9 –
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its eigenvalues take the simple form

λ0 = −Λ

2
+ T tt , (3.27)

λ1 =
1

2

[
−Λ + T rr + T xx +

[
(T rr − T xx )2 + 4T xr T

r
x

] 1
2

]
, (3.28)

λ2 =
1

2

[
−Λ + T rr + T xx −

[
(T rr − T xx )2 + 4T xr T

r
x

] 1
2

]
, (3.29)

λ3 =
1

2

[
−Λ + T yy + T zz +

[(
T yy − T zz

)2
+ 4T zy T

y
z

] 1
2

]
, (3.30)

λ4 =
1

2

[
−Λ + T yy + T zz −

[(
T yy − T zz

)2
+ 4T zy T

y
z

] 1
2

]
. (3.31)

Since we obviously have λ1 ≥ λ2 and λ3 ≥ λ4, the criteria discussed in §2 above reduces

to just checking whether the following conditions hold:

λ0 ≤ 0, λ2 − λ0 ≥ 0, λ4 − λ0 ≥ 0. (3.32)

For the numerics, we set

Λ = 12. (3.33)

(In R = 1 units).

From eq. (3.13) we can now determine β2, β3 and thus the lower bound on σ, eq. (3.5),

which turns out to be σlower = 0.5065. As we increase σ we find in the numerical analysis

that violations of the null energy condition start setting in around σ = 1.05026. The weak

energy condition is not violated before this. Thus, there is a finite interval 0.5065 < σ <

1.05, within which both the correct asymptotic behavior for the metric is obtained and the

null and weak energy conditions are met.

To illustrate this, we consider the case where σ = 1 in more detail. It turns out that

λ2 < λ4, where the eigenvalues are defined in eq. (3.27), eq. (3.28), eq. (3.29), eq. (3.30),

eq. (3.31).

The plots of λ0 and min(λc − λ0) = λ2 − λ0, are given in figure 1, 2. From figure 1 we

see that λ0 is always negative. In figure 2 we see that min(λc−λ0) > 0 but there is a region

around r ∼ 3 where it becomes very small. We have investigated this region further in

much more detail numerically and find that even after going out to arbitrarily large values

of x, min(λc − λ0) continues to be positive in the worrisome range 2 < r < 8. For a fixed

value of r, in this range, as we go out to larger x the value of min(λc−λ0) decreases reaching

a minimum value for |x| → ∞. For example, the resulting plot for r = 3, as a function of

x, is given in figure 3 where we see that the minimum value obtained for min(λc − λ0) is

positive. For other values of r in this range a qualitatively similar plot is obtained as x

is varied with the minimum value of min(λc − λ0) again being positive. As an additional

check, we have analytically computed the value of min(λc−λ0) in the limit where |x| → ∞.

In the worrisome region 2 < r < 8 we find that this value is positive. We show this in

figure 4 where the limiting value of min(λc − λ0), as |x| → ∞, is plotted as a function of

r. We see that as r increases, this limiting value at first decreases, reaching a minimum at
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Figure 1. Type II 3D plot of λ0 (time-like eigenvalue) versus r and x for σ = 1, Λ = 12.

Figure 2. Type II 3D plot of min(λc − λ0) versus r and x for σ = 1, Λ = 12.

around r = 5, and then increases again. The minimum value is clearly positive showing

that the null energy condition is indeed met everywhere in the interpolating metric.

Let us end this section with one comment. Because of the upper bound on σ, which

arises in order to meet the energy conditions, the metric cannot approach that of Lifshitz

space arbitrarily rapidly. The reader might worry that the values of σ allowed by this

bound are too small to be physically acceptable. To explain this, consider as an example

the more familiar case of asymptotically AdS5 spacetime. Since a domain wall in AdS5

ought to carry positive energy density and pressure, one might expect that the rate at
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Figure 3. Type II plot of min(λc − λ0) versus x at r = 3 for σ = 1, Λ = 12.

Figure 4. Type II list plot of min(λc − λ0) versus r as x→ ±∞ for for σ = 1, Λ = 12.

which the metric of such a solution approaches AdS5 is governed by the normalizable

metric deformations of AdS5, and should not be slower. A similar type of argument should

also apply to Lifshitz spaces. However, this expectation need not be valid if other fields

are also turned on, since these fields can source the metric, and this can lead to a fall-off

slower than that expected from the normalizable mode of the metric itself.

4 Types VI, V and III

We now turn to constructing metrics which interpolate from Bianchi Types VI, III and V

to Lifshitz. Since our discussion will closely parallel that for Type II above, we will skip

some details. We will find that an analysis along the lines above will successfully lead to a
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class of interpolating metrics for Type VI and Type III, meeting the weak and null energy

conditions. However, for reasons which will become clearer below, we do not succeed in

finding such an interpolating metric for Type V.

The algebra for a general Type VI spacetime is characterized by one parameter ‘h’.

Killing vectors and invariant one-forms for Type VI are given in appendix A of [38] (see

also [75]),

ξ1 = ∂y, ξ2 = ∂z, ξ3 = ∂x + y∂y + hz∂z (4.1)

and

ω1 = e−xdy, ω2 = e−hxdz, ω3 = dx . (4.2)

These depend on the parameter h.

The Type V algebra is a special case of Type VI, and is obtained by setting h = 1. The

Killing vectors and invariant one-forms can then be obtained from eq. (4.1) and eq. (4.2)

by setting h = 1. Similarly the Type III algebra is also a special case obtained by setting

h = 0, with the Killing vectors and one-forms given by setting h = 0 in the equations

above.

To keep the discussion simple, we restrict ourselves to only considering the case h = −1

for Type VI, besides also considering the Type V and Type III cases.

The invariant one-forms for Type VI with h = −1 are

ω1 = e−xdy, ω2 = exdz, ω3 = dx. (4.3)

Bianchi Type VI attractor solutions, for the case h = −1, were obtained in section 4.2

of [38] for a system of gravity coupled with a massive gauge field, with an action eq. (3.8).

The solution has a metric,

ds2
B = R2[dr2 − e2βtrdt2 + e2β1r(ω1)2 + e2β2r(ω2)2 + e2β3r(ω3)2] (4.4)

and a gauge field, eq. (3.11), with the invariant one-forms being given in eq. (4.3). As in

the discussion for Type II we will work in R = 1 units below. The exponents βt, β1, β2, β3

in the solution are then given in terms of Λ by

βt = v, (4.5)

β1 = β2 =
(−4 + Λ− u)v

24− 4Λ
, (4.6)

β3 = 0, (4.7)

while the mass and At are

m2 =
2

3
(8− Λ + u), (4.8)

At =
−3v2 + u

6− Λ
, (4.9)

where

u =
√
−80 + 8Λ + Λ2, (4.10)

v =

[
−28 + 5Λ + u

6

] 1
2

. (4.11)
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Demanding that At,m
2, βt, β1, β2 be positive and u be real, we get Λ > 6. The Lifshitz

spacetime in the UV is also obtained as a solution of the same system, eq. (3.8). The

metric is given by eq. (3.16) and the gauge field by eq. (3.17). The exponent βt, β̃ and At
are given in eq. (3.18), (3.19) and (3.20) in terms of m2,Λ. We will take the value of Λ

to be the same in the IR Type VI and the UV Lifshitz theories. For simplicity we will

also take condition eq. (3.5) to hold so that the exponents along the time direction are the

same, accordingly we have denoted both of them as βt above.

The strategy we now follow is similar to the Type II case. The interpolating metric is

given by eq. (3.7), which when written out in full becomes

ds2 = dr2 − e2βtrdt2

+

[(
1− tanhσr

2

)
+

(
1 + tanhσr

2

)
e2β̃r

]
dx2

+

[(
1− tanhσr

2

)
e2β1r−2x +

(
1 + tanhσr

2

)
e2β̃r

]
dy2

+

[(
1− tanhσr

2

)
e2β2r+2x +

(
1 + tanhσr

2

)
e2β̃r

]
dz2.

(4.12)

As in the Type II case, we again require that the interpolating metric correctly asymp-

totes to Type VI in the IR and Lifshitz in the UV. This now imposes the lower bound

σ > β1 − β̃ = β2 − β̃. (4.13)

We remind the reader again that the r → +∞ limit is taken while keeping x fixed to obtain

this bound.

We take Λ (in R = 1 units) to have the value given in eq. (3.33). The lower bound for

σ then becomes, σ > 0.0579912. The matter stress tensor is then calculated as given in

eq. (3.26) and we examine its properties with respect to the energy conditions numerically.

The numerical analysis shows that as σ is increased violations of the null energy con-

dition start setting in around σ = 1.15993. The weak energy condition is not violated for

smaller values of σ. Thus, as in the the Type II case, there is a non-vanishing interval for σ

within which the metric has the correct asymptotic behavior and the weak and null energy

conditions are both met.

To illustrate this, consider the case when σ = 1, which lies within this interval. The

minimum of the eigenvalues of the spatial eigenvectors turns out to be λ2, where the

eigenvalues are defined in eq. (3.27)–eq. (3.31). The plots of λ0 and min(λc−λ0) = λ2−λ0,

are given in figure 5, 6, as a function of the r, x coordinates. We see that the qualitative

behavior is similar to that in Type II. λ0 is always negative. And λ2 − λ0 is positive but

there is a worrisome region around r = 5 where this difference of eigenvalues becomes small.

We have analyzed this region more carefully further. One finds that for any fixed r ∈ [4, 9]

the minimum value for λ2 − λ0 is attained as |x| → ∞ and moreover this minimum value

is positive. An analytic expression for this minimum value was also obtained and agrees

with the numerical results. This is shown in figure 7 where this minimum value is plotted

as a function of r and shown to be positive. These results establish that the interpolating
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Figure 5. Type VI 3D plot of λ0 (time-like eigenvalue) versus r and x for σ = 1, Λ = 12.

Figure 6. Type VI 3D plot of min(λc − λ0) versus r and x for σ = 1, Λ = 12.

metric eq. (4.12) satisfies both the weak and the null energy conditions when σ takes values

within a suitable range.

4.1 Type III

Since the analysis follows that of the Type VI case closely we will be more brief for this

case.

The invariant one-forms for Type III, see appendix A of [38], are given by

ω1 = e−xdy, ω2 = dz, ω3 = dx. (4.14)
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Figure 7. Type VI list plot of min(λc − λ0) versus r as x→ ±∞ for σ = 1, Λ = 12.

Solutions of Type III for the system described by the action eq. (3.8) exist and have

been discussed in section 4.2.2 of [38]. These take the form eq. (4.4), eq. (3.11) for the

metric and gauge field. The exponents βt, β1, β2, the gauge field At and m2 (in R = 1

units) are given by

βt = v, (4.15)

β1 = β3 = 0, (4.16)

β2 =
(−2 + Λ− u)v

6− 2Λ
, (4.17)

m2 =
1

2
(4− Λ + u), (4.18)

At =
−4v2 + 2u

3− Λ
, (4.19)

where

u =
√
−8 + Λ2, (4.20)

v =

√
−8 + 3Λ + u

2
. (4.21)

Demanding that At,m
2, βt, β2 be positive and u to be real, we get Λ > 3. To obtain the

desired interpolation from a Bianchi Type III solution to Lifshitz, we follow the strategy
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adopted in case of Type II, VI, above, and consider the following interpolating metric:

ds2 = dr2 − e2βtrdt2

+

[(
1− tanhσr

2

)
+

(
1 + tanhσr

2

)
e2β̃r

]
dx2

+

[(
1− tanhσr

2

)
e−2x +

(
1 + tanhσr

2

)
e2β̃r

]
dy2

+

[(
1− tanhσr

2

)
e2β2r +

(
1 + tanhσr

2

)
e2β̃r

]
dz2.

(4.22)

Requiring this interpolating metric to correctly asymptote to Type VI in the IR and

Lifshitz in the UV imposes the following lower bound: σ > β2 − β̃. We choose Λ = 12 in

R = 1 units. The lower bound for σ then becomes, σ > 0.0456046.

Furthermore, we numerically find that violations of the null energy condition start

setting in around σ = 0.40108. The weak energy condition is not violated for smaller

values of σ. Thus, we find once again that there is a range of values for σ for which the

metric asymptotes to the required forms and for which the weak and null energy conditions

are preserved.

To illustrate this, we choose σ = 0.3 which lies in the allowed region. The plots of λ0

and min(λc− λ0) = λ2− λ0, where λ0 and λ2 are as defined in eq.(3.27) and eq.(3.29), are

given in figure 8 and figure 9. We see that λ0 is always negative. And λ2 − λ0 is positive

but this difference becomes small near r ∼ 10−15 as x→ −∞. We examined this region in

more detail and find that for any fixed r in this region λ2−λ0 attains its minimum value as

x is varied for x→ −∞ and this minimum value is indeed positive. An analytic expression

for this minimum value was obtained, and agrees with the numerical analysis. In fig 10 we

plot this minimum value, attained when x→ −∞, for λ2 − λ0 against r. We see that the

minimum value is positive. These results establish that the interpolating metric eq. (4.22)

in the Type III case also meets the weak and null energy conditions for a suitable range of

σ values.

4.2 Type V

The invariant one-forms in the Type V case are

ω1 = e−xdy, ω2 = e−xdz, ω3 = dx. (4.23)

Solutions of Type V for the system, eq. (3.8) take the form eq. (3.2), eq. (3.11). The

parameters, βt, β1, β2, m
2, At, are given by

βt =
√
−4 + Λ, (4.24)

β1 = β2 = β3 = 0, (4.25)

m2 = 0, (4.26)

At =
2(6− Λ)

4− Λ
. (4.27)
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Figure 8. Type III 3D plot of λ0 (time-like eigenvalue) versus r and x for σ = 0.3, Λ = 12.

Figure 9. Type III 3D plot of min(λc − λ0) versus r and x for σ = 0.3, Λ = 12.

Demanding that At, βt be positive and real respectively, we get Λ > 6. Starting from this

metric in the IR one would like to consider a metric of the form eq. (3.7) which interpolates

to Lifshitz space in the UV. However, it turns out that in this case interpolations of the

the type eq. (4.22) violate the null energy condition for all values of σ.

The failure of the interpolating metric to work in this case can in fact be understood

analytically. It is tied to the fact that the Type V solution has one important difference

with the other kinds of solutions, Type II, VI, III, studied above. Here, it turns out that
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Figure 10. Type III list plot of min(λc − λ0) versus r as x→ −∞ for σ = 0.3, Λ = 12.

the smallest eigenvalue of T
(matter)µ
ν corresponding to a space-like eigenvector, min(λc), c =

1, 2, 3, 4, is exactly equal to the eigenvalue corresponding to the time-like eigenvector, λ0,

and thus the null energy condition eq. (2.2) is met as an equality. This case is therefore

much more delicate.

In fact, a perturbative analysis reveals that once the Type V metric is deformed by

considering the full interpolating metric given in eq. (4.22), the splitting which results as

r → −∞ goes in the wrong direction, making min(λc)− λ0 < 0 for any value of σ, leading

to a violation of the null energy condition.

5 From Type IX to AdS2 × S3

The symmetry algebra for Bianchi Type IX is SO(3) and its natural action is on a compact

space corresponding to a squashed S3. Therefore, for Type IX it is natural to explore

interpolations going from a Type IX attractor geometry to AdS2×S3 instead of AdS2×R3

or Lifshitz.

The strategy we use for finding such an interpolation is different from what was used

in the cases above. It is motivated by the fact that the SO(3) symmetry for Type IX is a

subgroup of the symmetries of S3, SO(3) × SO(3). The interpolating metric we consider

will therefore be obtained by introducing a deformation parameter which allows the spatial

components of the metric to go from that of a squashed S3 in the IR to the round S3 in

the UV. This is somewhat akin to what was done in [38] to find an interpolation between

Type VII and Type I.

The invariant one-forms for Bianchi Type IX are

ω1 = − sin(z) dx+ sin(x) cos(z) dy,

ω2 = cos(z) dx+ sin(x) sin(z) dy,

ω3 = cos(x) dy + dz.
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One finds that a Type IX attractor solution arises in a system of Einstein gravity with

the cosmological constant Λ, coupled to two gauge fields, A1, A2 with action

S =

∫
d5x
√
−g
(
R+ Λ− 1

4
F 2

1 −
1

4
F 2

2 −
1

4
m2A2

2

)
. (5.1)

Note that A1 is massless while A2 has (mass)2 = m2.

In this solution the metric is given by

ds2 = R2[dr2 − e2βtrdt2 + (ω1)2 + (ω2)2 + λ (ω3)2] (5.2)

and the two gauge fields are

A1 =
√
At e

βtrdt, A2 =
√
As ω

3 =
√
As (cos(x)dy + dz). (5.3)

Note that λ in eq. (5.2) is the deformation parameter we had mentioned above.

In R = 1 units, the equations of motion which follow from eq. (5.1) give rise to the

following relations,

m2 = −2λ, At =
2(−λ+ 2Λ + 4)

−λ+ 2Λ + 3
, (5.4)

As = 1− λ, βt =

[
−λ+ 2Λ + 3

2

] 1
2

. (5.5)

These relations can be thought of as determining As, At, βt, λ in terms of Λ and m2.

Note that the conditions As, At ≥ 0, Λ > 0 imply, from eq. (5.4) and eq. (5.5), the

relation

λ ≤ 1. (5.6)

It is easy to see that for λ = 1, this solution becomes3 AdS2 × S3, and for any other value

of λ between 0 and 1, it is Type IX.

Let us make one comment before proceeding. Eq. (5.4) and eq. (5.5) give four relations

and at first it might seem that they determine the four parameters At, As, λ, βt and therefore

determine the solution completely. However, since we have set the radius R = 1, this is

not the case and the solution in fact contains one undetermined parameter. This becomes

clear if we consider the λ = 1 case, where As = 0 and the massive gauge field vanishes.

The resulting solution is AdS2 × S3 which is the near-horizon extremal RN solution. This

solution has one free parameter, which we can take to be At, the value of the massless

gauge field which determines the electric field of this gauge field. Or we can take it to be

R. In the interpolation below, we will take the free parameter to be R, and set R = 1,

keeping its value fixed as the radial coordinate r varies.

3We note that (ω1)2 + (ω2)2 + (ω3)2 may be obtained as the pullback of the standard Euclidean metric

on R4 (with coordinates W,X, Y, Z) under the following S3 embedding:

W = cos
(x

2

)
cos

(y + z

2

)
, X = cos

(x
2

)
sin

(y + z

2

)
,

Y = sin
(x

2

)
cos

(y − z

2

)
, Z = sin

(x
2

)
sin

(y − z

2

)
.
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It turns out that for the solution given above in eq. (5.2), eq. (5.3), eq. (5.4), eq. (5.5),

for any given λ, the null energy condition is satisfied but as an equality, with the smallest

eigenvalue of a space-like eigenvector of T
(matter)µ
ν , min(λc), being equal to the eigenvalue

for the time-like eigenvector, λ0. This is analogous to what we saw above in the Type V

case. However, here because the symmetries involved are different, we can choose another

kind of interpolation, as mentioned in the beginning of this section.

We do this by taking λ to be a function of r of the form

λ(r) = C + (1− C)

(
1 + tanh(σr)

2

)
(5.7)

where C, and σ are constants, with 0 < C < 1, to meet eq. (5.6). We find that the

degeneracy between min(λc), λ0 is now lifted. Unlike the Type V case though, this lifting

occurs so that min(λc) − λ0 > 0, if σ is sufficiently small, thus preserving the null energy

condition, eq. (2.2). If σ becomes bigger than a critical value, violations of the NEC set in.

For example, for the choice of Λ = 12, and C = 0.5 we find that the energy conditions

are met for a range of σ up to σcrit = 1.82. For 0 < σ ≤ 1.82 and C = 0.5 both eq. (2.4),

eq. (2.5) are met, so that the interpolating metric above satisfies the WEC and hence also

the NEC.

For C = 0.5, σ = 0.5, the results are summarized in figure 11 and 12. figure 11

shows that λ0 satisfies the condition λ0 < 0. And figure 12 shows that min(λc − λ0) > 0.

As r → ±∞ the interpolation approaches a solution of the type considered in eq. (5.2),

eq. (5.3), and the value of min(λc − λ0) → 0. However, we have verified that at both

ends, r → ±∞, min(λc − λ0) approaches zero from above so that the NEC continues to

hold. Together, these results imply that T
(matter)µ
ν satisfies the weak energy condition, and

therefore also the null energy condition.

6 C-function

In this section, we investigate a large class of geometries of the form

ds2 = −gtt(r)dt2 + dr2 + gij(x
i, r)dxidxj (6.1)

which interpolate between two Bianchi attractor spacetimes. The Bianchi attractors arise

at the UV and IR ends, r → ±∞ respectively, where the geometry takes the scale invariant

form, eq. (3.2), with the exponents βt, βi being constant and positive. The UV and IR ends

are defined by the redshift factor, gtt, which decreases from the UV to the IR.

We find that as long as the matter sourcing the geometry satisfies the null energy

condition, the area element of the submanifold spanned by the xi coordinates (at constant

t, r) monotonically decreases with r, obtaining its minimum value in the IR. For a Bianchi

attractor, eq. (3.2), the area element is proportional to e
∑

i βir and diverges in the UV,

r → ∞, while vanishing in the IR, r → −∞. The only exception is when the exponents

βi all vanish, as happens for example in AdS2 ×R3 space, in which case the area element

becomes a non-zero constant. We also find an additional function, which we will refer to

as the C-function below, which is monotonically decreasing from the UV to the IR. For an
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Figure 11. Type IX 3D plot of λ0 (time-like eigenvalue) versus r and x for C = 0.5, σ = 0.5,

Λ = 12.

Figure 12. Type IX 3D plot of min(λc − λ0) versus r and x for C = 0.5, σ = 0.5, Λ = 12.

AdS attractor, this function attains a constant value and is the central charge. For other

Bianchi attractors meeting a specific condition, given in eq. (6.18) below, this function also

flows to a constant in the near-horizon region. More generally, when this specific condition

is not met, the function either vanishes or diverges as r → ±∞. All of these results are

most easily derived by applying Raychaudhuri’s equation to an appropriately chosen set of

null geodesics in the geometry, eq. (6.1).

Note that the flows we study include interpolations between two AdS spacetimes which

at intermediate values of r can break not only Lorentz invariance but also spatial rotational

invariance and translational invariance. As long as the UV and IR geometries are AdS,
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our results imply that the IR central charge must be smaller than the UV one. Our

results therefore lead to a generalization of the holographic C-theorem for flows between

conformally invariant theories which can also break boost, rotational and translational

symmetries. This is in contrast to much of the discussion in the literature so far, which

has considered only Lorentz invariant flows.

Besides the area element and the C-function mentioned above, and of course monotonic

functions of these, for example, powers of the area element or the C-function, we do not

find any other function which in general would necessarily be monotonic as a consequence

of the null energy condition. As was mentioned above, both the area element and the

C-function do not in general attain finite non-vanishing values in the asymptotic Bianchi

attractor regions. This suggests that for Bianchi attractors in general, no analogue of a

finite, non-vanishing, central charge can be defined which is monotonic under RG flow. This

conclusion should apply for example to general Lifshitz spacetimes (see also a discussion of

these cases in [76]). When the Bianchi attractor meets the specific condition of eq. (6.18),

the C-function does become a finite constant and the analogue of the central charge can

be defined. Understanding this constant in the field theory dual to the Bianchi attractor

would be a worthwhile thing to do.

6.1 The analysis

We now turn to describing the analysis in more detail. Our notation will follow that

of [77], section 9.2. The analysis is also connected to the discussion of a C-function in [78].

A nice discussion of the C-function in AdS space can be found in section 4.3.2 of [79]. For

discussions of renormalization group flows in the context of the AdS/CFT correspondence,

see [80–84]. The earliest proofs of holographic C-theorems appear in [85, 86], and our

strategy is a generalization of the one employed there.

We start with a spacetime described by the metric, eq. (6.1), and consider a 3-

dimensional submanifold spanned by the xi coordinates for any fixed r, t. Next, we consider

a family of null geodesics which emanate from all points of this submanifold. If na is the

tangent vector of the null geodesic, with a taking the values a = t, r, i = 1, 2, 3, then the

geodesics we consider have ni = 0 so that they correspond to motion only in the radial

direction. Both the radially in-going and out-going families of this type form a congruence.

To arrive at our results, it is enough to consider any one of them and we consider the radial

out-going geodesics below. The time-like component of the vectors in this congruence, nt,

is a constant which we can set to unity,

nt = 1. (6.2)

Then for the radially outgoing geodesics

nr =
dr

dλ
=

1
√
gtt
, (6.3)

where λ is the affine parameter along the geodesic.

Now we take the tensor field

Bab = ∇bna (6.4)
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and consider its components for a, b = i, j = 1, 2, 3. In the notation of [77], this gives us

the components of B̂ab. It is easy to see that

Bij = −Γcijnc =
1

2

∂rgij
gtt

(6.5)

and thus Bij is symmetric so that the twist of the congruence vanishes. The expansion of

the congruence, denoted by θ, is then

θ =
1

2
∂rgij

gij
√
gtt

= ∂r(lnA)
1
√
gtt
, (6.6)

where we have introduced the notation

A ≡
√

det(gij) (6.7)

to denote the area element of the hypersurface spanned by the xi coordinates for any

constant r, t.

From eq. (6.6) and eq. (6.3) we get that

dθ

dλ
=

1
√
gtt
∂r

(
∂r lnA
√
gtt

)
. (6.8)

Raychaudhuri’s equation then gives

dθ

dλ
= −1

3
θ2 − σ̂abσ̂ab −Rcdncnd (6.9)

since the twist ω̂ab = 0. Note that the coefficient of the first term on the r.h.s. is 1
3 and not

1
2 since we are in 4 + 1 dimensions and not 3 + 1 dimensions.

If the matter sourcing the geometry satisfies the null energy condition, the Ricci curva-

ture satisfies the relation Rcdn
cnd ≥ 0, leading to the conclusion from eq. (6.9) that dθ

dλ < 0.

From eq. (6.8), this in turn leads to

∂r

(
∂r lnA
√
gtt

)
< 0. (6.10)

In the UV, r →∞,
∂r lnA
√
gtt

=
∑
i

βie
−βtr > 0 (6.11)

where βi, βt are the exponents corresponding to the UV attractor. It then follows from

eq. (6.10) that for all values of r, ∂r lnA√
gtt

> 0, and thus

∂r lnA > 0. (6.12)

This leads to our first result: the area element A, defined in eq. (6.7), decreases monoton-

ically from the UV, r →∞, to the IR, r → −∞.

Raychaudhuri’s equation, eq. (6.9) also leads to the conclusion that

dθ

dλ
+

1

3
θ2 ≤ 0, (6.13)
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if the matter satisfies the null energy condition. From eq. (6.6), eq. (6.8) this leads to

∂r

(
(∂r lnA)A1/3

√
gtt

)
< 0. (6.14)

A monotonically decreasing function from the UV to the IR is therefore given by

C =

( √
gtt

(∂r lnA)A1/3

)3

. (6.15)

For a Bianchi attractor with exponents βt, βi, C becomes

C ∝

(
e(βt−β̄)r

3β̄

)3

, (6.16)

where we have defined

β̄ =
1

3

∑
i

βi. (6.17)

The overall power of 3 in the definition of C, eq. (6.15), is chosen so that in AdS space,

where βi = βt and C is a constant, it agrees with the usual definition of the central charge

up to an overall coefficient. More generally, C also becomes a constant for any Bianchi

attractor meeting the condition

βt = β̄ =
1

3

∑
i

βi (6.18)

and now takes a value

C ∝ 1

(
∑

i βi)
3 . (6.19)

However, for the general case of a Bianchi attractor which does not meet the condition in

eq. (6.18), C does not attain a constant value. In such situations, for C to be monotonically

decreasing towards the IR or constant, we need (βt − β̄) ≥ 0. Thus, we find that if the

attractor arises in the IR, then our C vanishes. On the other hand, if the attractor arises

in the UV, it diverges.

7 Conclusions

In this paper, we constructed a class of smooth metrics which interpolate from various

Bianchi attractor geometries in the IR to Lifshitz spaces or AdS2 × S3 in the UV. We did

not show that these interpolating metrics arise as solutions to Einstein gravity coupled with

suitable matter field theories. However, for Bianchi Types II, VI (with parameter h = −1),

III and IX, we did show that were these geometries to arise as solutions to Einstein’s

equations, the required matter would not violate the weak or null energy conditions. It

is well known that the Lifshitz spaces (which are in fact attractors of Bianchi Type I) or

AdS2 × S3 geometry in turn can be connected to AdS5 in the ultraviolet, with no non-

normalizable deformation for the metric being turned on in the asymptotic AdS5 region.

Thus, our results establish that there is no barrier, at least at the level of energy conditions,
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to having a smooth interpolating metric arise as a solution of the Einstein equations sourced

by reasonable matter, which connects the various Bianchi classes mentioned above with

asymptotic AdS5 space. We should mention here that for Type VII geometries, which were

not investigated in this paper, solutions with reasonable matter which interpolate from the

attractor region to AdS2 ×R3 or AdS5 are already known to exist [38].

The absence of any non-normalizable metric deformations in the asymptotic AdS5

region in our interpolations suggests that the Bianchi attractor geometries can arise as

the dual description in the IR of field theories which live in flat space. The anisotropic

and homogeneous phases in these field theories, described by the Bianchi attractor regions,

could arise either due to a spontaneous breaking of rotational invariance or due to its

breaking by sources other than the metric in the field theory. We expect both possibilities

to be borne out. For spin density waves, which correspond to Type VII, indeed this is

already known to be true [33–38].

Finding such interpolating metrics as solutions to Einstein’s equations is not easy, as

was mentioned in the introduction, since it requires solving coupled partial differential

equations in at least two variables. We hope that the results presented here will provide

some further motivation to try and address this challenging problem. Perhaps it might be

best to first look for supersymmetric domain walls interpolating between different Bianchi

types, since for such solutions, working with first-order equations often suffices.

We also note that our smooth interpolating metric which interpolates from Bianchi

Type V to Lifshitz failed to satisfy the null energy conditions. Our failure in this case may

be due to the restricted class of functions we used to construct the interpolating metrics

or it might suggest a more fundamental constraint. We leave a more detailed exploration

of this issue for the future.

Towards the end of the paper, we explored whether a C-function exists for flows be-

tween two Bianchi attractor geometries. As long as the matter sourcing the geometry meets

the null energy condition, we found that a function can be defined which is monotonically

decreasing from the UV to the IR. In AdS space, this function becomes the usual central

charge. More generally though, unless the Bianchi attractor meets a specific condition

relating the exponents βi, βt which characterize it, the function we have identified does not

attain a finite, non-vanishing constant value in the attractor geometry. The absence of a

general monotonic function which is non-vanishing and finite in the attractor spacetime

suggests that no analogue of a central charge, which is monotonic under RG flow, can be

defined in general for field theories dual to the Bianchi attractors. For flows between AdS

spacetimes, on the other hand, our analysis implies that the central charge decreases even

under RG flows which break boost, rotational and translational invariance.
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A The weak and null energy conditions

We shall now review the weak and null energy conditions in detail. The weak energy

condition (WEC) stipulates that the local energy density as observed by a time-like observer

is nonnegative. In other words, if uµ are the components of a time-like vector, we must

have Tµνu
µuν ≥ 0 everywhere, with Tµν being the components of the stress tensor. Note

that if we raise one of the indices of Tµν to get Tµν , we could interpret the stress tensor as

a linear transformation T that acts on the components of a vector u via (Tu)µ = Tµν uν .

The WEC now simply becomes 〈u, Tu〉 ≥ 0, where the angle brackets denote the inner

product with respect to the metric. Since T is a linear transformation from a vector space

to itself, it makes sense to talk of the eigenvalues and eigenvectors of T . In particular, if

u is a time-like eigenvector which is normalized so that 〈u, u〉 = −1 and which belongs

to some eigenvalue λ (not to be confused with the λ parameter we had introduced in the

interpolating metric), then we have

〈u, Tu〉 = λ〈u, u〉 = −λ. (A.1)

Thus, a necessary condition for the WEC to hold is that the eigenvalues corresponding to

all time-like eigenvectors of T be non-positive.

Note that this isn’t a sufficient condition for the WEC to hold. To go further, let us

first note that T is self-adjoint:

〈u, Tv〉 = Tµνu
µvν = 〈Tu, v〉.

However, it does not follow from this property that T is diagonalizable and that its eigen-

values are necessarily real, since the inner product is indefinite in a Lorentzian metric.

For the metrics we deal with in the paper, we fortunately do not have to deal with this

complication because, it turns out that in all the cases we analyze, T does turn out to be

diagonalizable with real eigenvalues. Accordingly, we restrict our discussion to this case

below.

It then follows that there exists a vierbein {u0, u1, u2, u3, u4} consisting of the eigen-

vectors of T , which is orthonormal in the sense that 〈ua, ub〉 = ηab. If we let Tua = λaua,

then our claim is that the WEC is equivalent to the following statement: λ0 ≤ 0 and

|λ0|+ λc ≥ 0 for c = 1, 2, 3, 4.

To prove necessity, we note that we have already shown that λ0 ≤ 0. Now, for an

arbitrary time-like vector of the form v = Au0 +Buc, where c can be 1, 2, 3 or 4, we have

〈v, v〉 = −A2 +B2 < 0. By the WEC we have

〈v, Tv〉 = |λ0|A2 + λcB
2 ≥ 0.
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If we let ε = A2 −B2, the above can rewritten as

(|λ0|+ λc)B
2 + ε|λ0| ≥ 0.

Since v is arbitrary, ε can be an arbitrarily small positive real number. It follows that

|λ0|+ λc ≥ 0 for c = 1, 2, 3, 4.

To prove sufficiency, we note that a generic time-like vector v may be given by

v = Au0 +Bu1 + Cu2 +Du3 + Eu4.

where the coefficients are subject to the following

A2 > B2 + C2 +D2 + E2.

The conditions λ0 ≤ 0 and |λ0|+ λc ≥ 0 for c = 1, 2, 3, 4 hence guarantee that

〈v, Tv〉 = |λ0|A2 + λ1B
2 + λ2C

2 + λ3D
2 + λ4E

2

≥ |λ0|(B2 + C2 +D2 + E2) + λ1B
2 + λ2C

2 + λ3D
2 + λ4E

2

= (|λ0|+ λ1)B2 + (|λ0|+ λ2)C2 + (|λ0|+ λ3)D2 + (|λ0|+ λ4)E2

≥ 0.

In fact, we can go further and easily show this implies the null energy condition (which

states that 〈n, Tn〉 ≥ 0 for all null vectors n everywhere) by following the same outline as

the proof above. We note that a generic null vector n may be given by

n = Au0 +Bu1 + Cu2 +Du3 + Eu4,

where the coefficients are subject to the following

A2 = B2 + C2 +D2 + E2.

The conditions λ0 ≤ 0 and |λ0|+ λc ≥ 0 for c = 1, 2, 3, 4 hence guarantee that

〈n, Tn〉 = |λ0|A2 + λ1B
2 + λ2C

2 + λ3D
2 + +λ4E

2

= λ0|(B2 + C2 +D2 + E2) + λ1B
2 + λ2C

2 + λ3D
2 + λ4E

2

= (|λ0|+ λ1)B2 + (|λ0|+ λ2)C2 + (|λ0|+ λ3)D2 + (|λ0|+ λ4)E2

≥ 0,

which is the null energy condition (NEC). Thus, in terms of the eigenvalues, the NEC

is equivalent to the following statement: −λ0 + λc ≥ 0 for c = 1, 2, 3, 4 where λ0 is the

eigenvalue corresponding to the time-like eigenvector and λc corresponds to any of the

space-like eigenvectors.

To summarize the above observations:

1. For the WEC, it suffices to have (i) λ0 ≤ 0 and (ii) |λ0|+ λc ≥ 0 for c = 1, 2, 3, 4.

2. For the NEC, it suffices to have −λ0 + λc ≥ 0 for c = 1, 2, 3, 4, where λ0 is the

eigenvalue corresponding to the time-like eigenvector and λc corresponds to any of

the space-like eigenvectors.

– 28 –



J
H
E
P
0
3
(
2
0
1
4
)
0
7
4

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant.

Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

[2] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42

(2009) 343001 [arXiv:0904.1975] [INSPIRE].

[3] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy

Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

[4] S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Ann.

Rev. Condensed Matter Phys. 3 (2012) 9 [arXiv:1108.1197] [INSPIRE].

[5] S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D

78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

[6] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor,

Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[7] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12

(2008) 015 [arXiv:0810.1563] [INSPIRE].

[8] G.T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011)

313 [arXiv:1002.1722] [INSPIRE].

[9] S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D

78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

[10] M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

[11] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black

Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

[12] K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi and A. Westphal, Holography of

Dyonic Dilaton Black Branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

[13] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic

Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151

[arXiv:1005.4690] [INSPIRE].

[14] B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite

Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

[15] N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi

Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162]

[INSPIRE].

[16] N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement

Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

[17] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of

gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

– 29 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3246
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://arxiv.org/abs/0904.1975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1975
http://dx.doi.org/10.1155/2010/723105
http://dx.doi.org/10.1155/2010/723105
http://arxiv.org/abs/0909.0518
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0518
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125141
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125141
http://arxiv.org/abs/1108.1197
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1197
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://arxiv.org/abs/0801.2977
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2977
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://arxiv.org/abs/0803.3295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3295
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://arxiv.org/abs/0810.1563
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1563
http://dx.doi.org/10.1007/978-3-642-04864-7_10
http://dx.doi.org/10.1007/978-3-642-04864-7_10
http://arxiv.org/abs/1002.1722
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1722
http://dx.doi.org/10.1103/PhysRevD.78.106005
http://dx.doi.org/10.1103/PhysRevD.78.106005
http://arxiv.org/abs/0808.1725
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1725
http://arxiv.org/abs/0812.0530
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0530
http://dx.doi.org/10.1007/JHEP08(2010)078
http://arxiv.org/abs/0911.3586
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3586
http://dx.doi.org/10.1007/JHEP10(2010)027
http://arxiv.org/abs/1007.2490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2490
http://dx.doi.org/10.1007/JHEP11(2010)151
http://arxiv.org/abs/1005.4690
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4690
http://dx.doi.org/10.1007/JHEP12(2011)036
http://arxiv.org/abs/1107.2116
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2116
http://dx.doi.org/10.1007/JHEP01(2012)094
http://arxiv.org/abs/1105.1162
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1162
http://dx.doi.org/10.1007/JHEP01(2012)125
http://arxiv.org/abs/1111.1023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1023
http://dx.doi.org/10.1103/PhysRevB.85.035121
http://arxiv.org/abs/1112.0573
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0573


J
H
E
P
0
3
(
2
0
1
4
)
0
7
4

[18] E. Shaghoulian, Holographic Entanglement Entropy and Fermi Surfaces, JHEP 05 (2012)

065 [arXiv:1112.2702] [INSPIRE].

[19] X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for

theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].

[20] E. Perlmutter, Domain Wall Holography for Finite Temperature Scaling Solutions, JHEP

02 (2011) 013 [arXiv:1006.2124] [INSPIRE].

[21] E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165

[arXiv:1205.0242] [INSPIRE].

[22] K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological

solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].

[23] A. Donos and J.P. Gauntlett, Lifshitz Solutions of D = 10 and D = 11 supergravity, JHEP

12 (2010) 002 [arXiv:1008.2062] [INSPIRE].

[24] R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in

supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].

[25] K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D

85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].

[26] H. Singh, Lifshitz/Schrödinger Dp-branes and dynamical exponents, JHEP 07 (2012) 082

[arXiv:1202.6533] [INSPIRE].

[27] P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory,

JHEP 06 (2012) 129 [arXiv:1203.5381] [INSPIRE].

[28] P. Dey and S. Roy, Intersecting D-branes and Lifshitz-like space-time, Phys. Rev. D 86

(2012) 066009 [arXiv:1204.4858] [INSPIRE].

[29] S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector

and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602

[arXiv:0704.1604] [INSPIRE].

[30] S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys.

Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].

[31] H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition,

Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].

[32] H. Ooguri and C.-S. Park, Spatially Modulated Phase in Holographic quark-gluon Plasma,

Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].

[33] A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic

black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].

[34] A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091

[arXiv:1109.3866] [INSPIRE].

[35] A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108

(2012) 211601 [arXiv:1203.0533] [INSPIRE].

[36] A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D 86

(2012) 064010 [arXiv:1204.1734] [INSPIRE].

[37] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013)

126008 [arXiv:1303.4398] [INSPIRE].

– 30 –

http://dx.doi.org/10.1007/JHEP05(2012)065
http://dx.doi.org/10.1007/JHEP05(2012)065
http://arxiv.org/abs/1112.2702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2702
http://dx.doi.org/10.1007/JHEP06(2012)041
http://arxiv.org/abs/1201.1905
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1905
http://dx.doi.org/10.1007/JHEP02(2011)013
http://dx.doi.org/10.1007/JHEP02(2011)013
http://arxiv.org/abs/1006.2124
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2124
http://dx.doi.org/10.1007/JHEP06(2012)165
http://arxiv.org/abs/1205.0242
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0242
http://dx.doi.org/10.1007/JHEP08(2010)014
http://arxiv.org/abs/1005.3291
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3291
http://dx.doi.org/10.1007/JHEP12(2010)002
http://dx.doi.org/10.1007/JHEP12(2010)002
http://arxiv.org/abs/1008.2062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2062
http://dx.doi.org/10.1007/JHEP12(2010)047
http://arxiv.org/abs/1009.3445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3445
http://dx.doi.org/10.1103/PhysRevD.85.106006
http://dx.doi.org/10.1103/PhysRevD.85.106006
http://arxiv.org/abs/1202.5935
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5935
http://dx.doi.org/10.1007/JHEP07(2012)082
http://arxiv.org/abs/1202.6533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6533
http://dx.doi.org/10.1007/JHEP06(2012)129
http://arxiv.org/abs/1203.5381
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5381
http://dx.doi.org/10.1103/PhysRevD.86.066009
http://dx.doi.org/10.1103/PhysRevD.86.066009
http://arxiv.org/abs/1204.4858
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4858
http://dx.doi.org/10.1103/PhysRevLett.99.141602
http://arxiv.org/abs/0704.1604
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1604
http://dx.doi.org/10.1103/PhysRevD.81.044018
http://dx.doi.org/10.1103/PhysRevD.81.044018
http://arxiv.org/abs/0911.0679
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0679
http://dx.doi.org/10.1103/PhysRevD.82.126001
http://arxiv.org/abs/1007.3737
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3737
http://dx.doi.org/10.1103/PhysRevLett.106.061601
http://arxiv.org/abs/1011.4144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4144
http://dx.doi.org/10.1007/JHEP01(2012)061
http://arxiv.org/abs/1109.0471
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0471
http://dx.doi.org/10.1007/JHEP12(2011)091
http://arxiv.org/abs/1109.3866
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3866
http://dx.doi.org/10.1103/PhysRevLett.108.211601
http://dx.doi.org/10.1103/PhysRevLett.108.211601
http://arxiv.org/abs/1203.0533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0533
http://dx.doi.org/10.1103/PhysRevD.86.064010
http://dx.doi.org/10.1103/PhysRevD.86.064010
http://arxiv.org/abs/1204.1734
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1734
http://dx.doi.org/10.1103/PhysRevD.87.126008
http://dx.doi.org/10.1103/PhysRevD.87.126008
http://arxiv.org/abs/1303.4398
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4398


J
H
E
P
0
3
(
2
0
1
4
)
0
7
4

[38] N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar and S. P. Trivedi, Bianchi

Attractors: A Classification of Extremal Black Brane Geometries, JHEP 07 (2012) 193

[arXiv:1201.4861] [INSPIRE].

[39] N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar S.P. Trivedi and H. Wang, Extremal

Horizons with Reduced Symmetry: Hyperscaling Violation, Stripes and a Classification for

the Homogeneous Case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].

[40] N. Iizuka and K. Maeda, Study of Anisotropic Black Branes in Asymptotically

anti-de Sitter, JHEP 07 (2012) 129 [arXiv:1204.3008] [INSPIRE].

[41] N. Iizuka and K. Maeda, Stripe Instabilities of Geometries with Hyperscaling Violation,

Phys. Rev. D 87 (2013) 126006 [arXiv:1301.5677] [INSPIRE].

[42] G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices,

JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

[43] G.T. Horowitz, J.E. Santos and D. Tong, Further Evidence for Lattice-Induced Scaling,

JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].

[44] G.T. Horowitz and J.E. Santos, General Relativity and the Cuprates, arXiv:1302.6586

[INSPIRE].

[45] Y.-Y. Bu, J. Erdmenger, J.P. Shock and M. Strydom, Magnetic field induced lattice ground

states from holography, JHEP 03 (2013) 165 [arXiv:1210.6669] [INSPIRE].

[46] J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic

insulator/superconductor transition, JHEP 11 (2013) 027 [arXiv:1307.4609] [INSPIRE].

[47] M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic Stripes, Phys. Rev. Lett. 110

(2013) 201603 [arXiv:1211.5600] [INSPIRE].

[48] M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Striped order in AdS/CFT correspondence,

Phys. Rev. D 87 (2013) 126007 [arXiv:1304.3130] [INSPIRE].

[49] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9

(2013) 649 [arXiv:1212.2998] [INSPIRE].

[50] S. Cremonini and A. Sinkovics, Spatially Modulated Instabilities of Geometries with

Hyperscaling Violation, JHEP 01 (2014) 099 [arXiv:1212.4172] [INSPIRE].

[51] S. Cremonini, Spatially Modulated Instabilities for Scaling Solutions at Finite Charge

Density, arXiv:1310.3279 [INSPIRE].

[52] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

[53] N. Bao, S. Harrison, S. Kachru and S. Sachdev, Vortex Lattices and Crystalline Geometries,

Phys. Rev. D 88 (2013) 026002 [arXiv:1303.4390] [INSPIRE].

[54] A. Donos, Striped phases from holography, JHEP 05 (2013) 059 [arXiv:1303.7211]

[INSPIRE].

[55] N. Bao and S. Harrison, Crystalline Scaling Geometries from Vortex Lattices, Phys. Rev. D

88 (2013) 046009 [arXiv:1306.1532] [INSPIRE].

[56] S. Harrison, Landau Levels, Anisotropy and Holography, arXiv:1306.3224 [INSPIRE].

[57] P. Chesler, A. Lucas and S. Sachdev, Conformal field theories in a periodic potential:

results from holography and field theory, Phys. Rev. D 89 (2014) 026005 [arXiv:1308.0329]

[INSPIRE].

– 31 –

http://dx.doi.org/10.1007/JHEP07(2012)193
http://arxiv.org/abs/1201.4861
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4861
http://dx.doi.org/10.1007/JHEP03(2013)126
http://arxiv.org/abs/1212.1948
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1948
http://dx.doi.org/10.1007/JHEP07(2012)129
http://arxiv.org/abs/1204.3008
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3008
http://dx.doi.org/10.1103/PhysRevD.87.126006
http://arxiv.org/abs/1301.5677
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5677
http://dx.doi.org/10.1007/JHEP07(2012)168
http://arxiv.org/abs/1204.0519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0519
http://dx.doi.org/10.1007/JHEP11(2012)102
http://arxiv.org/abs/1209.1098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1098
http://arxiv.org/abs/1302.6586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6586
http://dx.doi.org/10.1007/JHEP03(2013)165
http://arxiv.org/abs/1210.6669
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6669
http://dx.doi.org/10.1007/JHEP11(2013)027
http://arxiv.org/abs/1307.4609
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4609
http://dx.doi.org/10.1103/PhysRevLett.110.201603
http://dx.doi.org/10.1103/PhysRevLett.110.201603
http://arxiv.org/abs/1211.5600
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5600
http://dx.doi.org/10.1103/PhysRevD.87.126007
http://arxiv.org/abs/1304.3130
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.3130
http://dx.doi.org/10.1038/nphys2701
http://dx.doi.org/10.1038/nphys2701
http://arxiv.org/abs/1212.2998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2998
http://dx.doi.org/10.1007/JHEP01(2014)099
http://arxiv.org/abs/1212.4172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4172
http://arxiv.org/abs/1310.3279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3279
http://arxiv.org/abs/1301.0537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0537
http://dx.doi.org/10.1103/PhysRevD.88.026002
http://arxiv.org/abs/1303.4390
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4390
http://dx.doi.org/10.1007/JHEP05(2013)059
http://arxiv.org/abs/1303.7211
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7211
http://dx.doi.org/10.1103/PhysRevD.88.046009
http://dx.doi.org/10.1103/PhysRevD.88.046009
http://arxiv.org/abs/1306.1532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1532
http://arxiv.org/abs/1306.3224
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3224
http://dx.doi.org/10.1103/PhysRevD.89.026005
http://arxiv.org/abs/1308.0329
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0329


J
H
E
P
0
3
(
2
0
1
4
)
0
7
4

[58] S. Ferrara, R. Kallosh and A. Strominger, N=2 extremal black holes, Phys. Rev. D 52

(1995) 5412 [hep-th/9508072] [INSPIRE].

[59] S. Bellucci, S. Ferrara, R. Kallosh and A. Marrani, Extremal Black Hole and Flux Vacua

Attractors, Lect. Notes Phys. 755 (2008) 115 [arXiv:0711.4547] [INSPIRE].

[60] S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space,

Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].

[61] G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole

thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].

[62] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative

gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].

[63] K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys.

Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].

[64] R. Kallosh, N. Sivanandam and M. Soroush, The Non-BPS black hole attractor equation,

JHEP 03 (2006) 060 [hep-th/0602005] [INSPIRE].

[65] S. Kachru, R. Kallosh and M. Shmakova, Generalized Attractor Points in Gauged

Supergravity, Phys. Rev. D 84 (2011) 046003 [arXiv:1104.2884] [INSPIRE].

[66] H. Braviner, R. Gregory and S.F. Ross, Flows involving Lifshitz solutions, Class. Quant.

Grav. 28 (2011) 225028 [arXiv:1108.3067] [INSPIRE].

[67] Y. Korovin, K. Skenderis and M. Taylor, Lifshitz as a deformation of Anti-de Sitter, JHEP

08 (2013) 026 [arXiv:1304.7776] [INSPIRE].

[68] S.P. Kumar, Heavy quark density in N = 4 SYM: from hedgehog to Lifshitz spacetimes,

JHEP 08 (2012) 155 [arXiv:1206.5140] [INSPIRE].

[69] H. Singh, Lifshitz to AdS flow with interpolating p-brane solutions, JHEP 08 (2013) 097

[arXiv:1305.3784] [INSPIRE].

[70] A.F. Faedo, B. Fraser and S.P. Kumar, Supersymmetric Lifshitz-like backgrounds from N =

4 SYM with heavy quark density, JHEP 02 (2014) 066 [arXiv:1310.0206] [INSPIRE].

[71] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge

University Press, (2004) [ISBN-10: 0521537800] [ISBN-13: 978-0521537803].

[72] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge

Monographs on Mathematical Physics (2008) [ISBN-10: 0521099064] [ISBN-13:

978-0521099066].

[73] H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers and E. Herlt, Exact Solutions of

Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics (2003) [ISBN

0 521 461 36 7].

[74] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Pergamon Press (1980)

[ISBN 0-08-025072-6].

[75] M.P. Ryan and L.C. Shepley, Homogeneous Relativistic Cosmologies, Princeton Series in

Physics (1975) [ISBN 0-691-0153-0].

[76] J.T. Liu and Z. Zhao, Holographic Lifshitz flows and the null energy condition,

arXiv:1206.1047 [INSPIRE].

– 32 –

http://dx.doi.org/10.1103/PhysRevD.52.R5412
http://dx.doi.org/10.1103/PhysRevD.52.R5412
http://arxiv.org/abs/hep-th/9508072
http://inspirehep.net/search?p=find+EPRINT+hep-th/9508072
http://arxiv.org/abs/0711.4547
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.4547
http://dx.doi.org/10.1016/S0550-3213(97)00324-6
http://arxiv.org/abs/hep-th/9702103
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702103
http://dx.doi.org/10.1103/PhysRevLett.77.4992
http://arxiv.org/abs/hep-th/9607108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607108
http://dx.doi.org/10.1088/1126-6708/2005/09/038
http://arxiv.org/abs/hep-th/0506177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506177
http://dx.doi.org/10.1103/PhysRevD.72.124021
http://dx.doi.org/10.1103/PhysRevD.72.124021
http://arxiv.org/abs/hep-th/0507096
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507096
http://dx.doi.org/10.1088/1126-6708/2006/03/060
http://arxiv.org/abs/hep-th/0602005
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602005
http://dx.doi.org/10.1103/PhysRevD.84.046003
http://arxiv.org/abs/1104.2884
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2884
http://dx.doi.org/10.1088/0264-9381/28/22/225028
http://dx.doi.org/10.1088/0264-9381/28/22/225028
http://arxiv.org/abs/1108.3067
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3067
http://dx.doi.org/10.1007/JHEP08(2013)026
http://dx.doi.org/10.1007/JHEP08(2013)026
http://arxiv.org/abs/1304.7776
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7776
http://dx.doi.org/10.1007/JHEP08(2012)155
http://arxiv.org/abs/1206.5140
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5140
http://dx.doi.org/10.1007/JHEP08(2013)097
http://arxiv.org/abs/1305.3784
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3784
http://dx.doi.org/10.1007/JHEP02(2014)066
http://arxiv.org/abs/1310.0206
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0206
http://arxiv.org/abs/1206.1047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.1047


J
H
E
P
0
3
(
2
0
1
4
)
0
7
4

[77] Robert. M. Wald, General Relativity, University Of Chicago Press, 1st edition (1984)

[ISBN-10: 0226870332] [ISBN-13: 978-0226870335].

[78] K. Goldstein, R.P. Jena, G. Mandal and S.P. Trivedi, A C-function for non-supersymmetric

attractors, JHEP 02 (2006) 053 [hep-th/0512138] [INSPIRE].

[79] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

[80] E.T. Akhmedov, A Remark on the AdS/CFT correspondence and the renormalization group

flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].

[81] E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the c

theorem, Nucl. Phys. B 541 (1999) 441 [hep-th/9807226] [INSPIRE].

[82] A. Gorsky, Integrability of the RG flows and the bulk/boundary correspondence,

hep-th/9812250 [INSPIRE].

[83] M. Porrati and A. Starinets, RG fixed points in supergravity duals of 4−D field theory and

asymptotically AdS spaces, Phys. Lett. B 454 (1999) 77 [hep-th/9903085] [INSPIRE].

[84] V. Balasubramanian and P. Kraus, Space-time and the holographic renormalization group,

Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [INSPIRE].

[85] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from

holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363

[hep-th/9904017] [INSPIRE].

[86] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on

perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022

[hep-th/9810126] [INSPIRE].

– 33 –

http://dx.doi.org/10.1088/1126-6708/2006/02/053
http://arxiv.org/abs/hep-th/0512138
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512138
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905111
http://dx.doi.org/10.1016/S0370-2693(98)01270-2
http://arxiv.org/abs/hep-th/9806217
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806217
http://dx.doi.org/10.1016/S0550-3213(98)00752-4
http://arxiv.org/abs/hep-th/9807226
http://inspirehep.net/search?p=find+EPRINT+hep-th/9807226
http://arxiv.org/abs/hep-th/9812250
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812250
http://dx.doi.org/10.1016/S0370-2693(99)00394-9
http://arxiv.org/abs/hep-th/9903085
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903085
http://dx.doi.org/10.1103/PhysRevLett.83.3605
http://arxiv.org/abs/hep-th/9903190
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903190
http://arxiv.org/abs/hep-th/9904017
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904017
http://dx.doi.org/10.1088/1126-6708/1998/12/022
http://arxiv.org/abs/hep-th/9810126
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810126

	Introduction
	Energy conditions 
	Outline of procedure
	More details for the Type II case
	Energy conditions for the Type II interpolation


	Types VI, V and III 
	Type III
	Type V

	From Type IX to AdS(2) x S**3
	C-function
	The analysis

	Conclusions
	The weak and null energy conditions

