15 research outputs found

    Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography

    Get PDF
    Purpose: The purpose of this study was to evaluate the accuracy of a novel fully automated deep learning (DL) algorithm implementing a recurrent neural network (RNN) with long short-term memory (LSTM) for the detection of coronary artery calcium (CAC) from coronary computed tomography angiography (CCTA) data. Materials and Methods: Under an IRB waiver and in HIPAA compliance, a total of 194 patients who had undergone CCTA were retrospectively included. Two observers independently evaluated the image quality and recorded the presence of CAC in the right (RCA), the combination of left main and left anterior descending (LM-LAD), and left circumflex (LCx) coronary arteries. Noncontrast CACS scans were allowed to be used in cases of uncertainty. Heart and coronary artery centerline detection and labeling were automatically performed. Presence of CAC was assessed by a RNN-LSTM. The algorithm's overall and per-vessel sensitivity, specificity, and diagnostic accuracy were calculated. Results: CAC was absent in 84 and present in 110 patients. As regards CCTA, the median subjective image quality, signal-to-noise ratio, and contrast-to-noise ratio were 3.0, 13.0, and 11.4. A total of 565 vessels were evaluated. On a per-vessel basis, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 93.1% (confidence interval [CI], 84.3%-96.7%), 82.76% (CI, 74.6%-89.4%), and 86.7% (CI, 76.8%-87.9%), respectively, for the RCA, 93.1% (CI, 86.4%-97.7%), 95.5% (CI, 88.77%-98.75%), and 94.2% (CI. 90.2%-94.6%), respectively, for the LM-LAD, and 89.9% (CI, 80.2%-95.8%), 90.0% (CI, 83.2%-94.7%), and 89.9% (CI, 85.0%-94.1%), respectively, for the LCx. The overall sensitivity, specificity, and diagnostic accuracy were 92.1% (CI, 92.1%-95.2%), 88.9% (CI. 84.9%-92.1%), and 90.3% (CI, 88.0%-90.0%), respectively. When accounting for image quality, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 76.2%, 87.5%, and 82.2%, respectively, for poor-quality data sets and 93.3%, 89.2% and 90.9%, respectively, when data sets rated adequate or higher were combined. Conclusion: The proposed RNN-LSTM demonstrated high diagnostic accuracy for the detection of CAC from CCTA

    Can computer-aided diagnosis assist in the identification of prostate cancer on prostate MRI? a multi-center, multi-reader investigation.

    Get PDF
    For prostate cancer detection on prostate multiparametric MRI (mpMRI), the Prostate Imaging-Reporting and Data System version 2 (PI-RADSv2) and computer-aided diagnosis (CAD) systems aim to widely improve standardization across radiologists and centers. Our goal was to evaluate CAD assistance in prostate cancer detection compared with conventional mpMRI interpretation in a diverse dataset acquired from five institutions tested by nine readers of varying experience levels, in total representing 14 globally spread institutions. Index lesion sensitivities of mpMRI-alone were 79% (whole prostate (WP)), 84% (peripheral zone (PZ)), 71% (transition zone (TZ)), similar to CAD at 76% (WP, p=0.39), 77% (PZ, p=0.07), 79% (TZ, p=0.15). Greatest CAD benefit was in TZ for moderately-experienced readers at PI-RADSv2 <3 (84% vs mpMRI-alone 67%, p=0.055). Detection agreement was unchanged but CAD-assisted read times improved (4.6 vs 3.4 minutes, p<0.001). At PI-RADSv2 ≥ 3, CAD improved patient-level specificity (72%) compared to mpMRI-alone (45%, p<0.001). PI-RADSv2 and CAD-assisted mpMRI interpretations have similar sensitivities across multiple sites and readers while CAD has potential to improve specificity and moderately-experienced radiologists' detection of more difficult tumors in the center of the gland. The multi-institutional evidence provided is essential to future prostate MRI and CAD development

    Fracture of the Atlas through a Synchondrosis of Anterior Arch

    Get PDF
    Cervical fractures are rare in paediatric population. In younger children, cervical fractures usually occur above the level of C4; whereas in older population, fractures or dislocations more commonly involve the lower cervical spine. Greater elasticity of intervertebral ligaments and also the spinal vertebrae explains why cervical fractures in paediatric ages are rare. The injury usually results from a symmetric or asymmetric axial loading. In paediatric cases, most fractures occur through the synchondroses which are the weakest links of the atlas. The prognosis depends on the severity of the spinal cord injury. In this case, we presented an anterior fracture in synchondrosis of atlas after falling on head treated with cervical collar. There was no neurologic deficit for the following 2 years

    Double-domed horizontal fissure

    No full text

    All over the map: An interobserver agreement study of tumor location based on the PI-RADSv2 sector map

    No full text
    © 2018 International Society for Magnetic Resonance in Medicine Background: Prostate imaging reporting and data system version 2 (PI-RADSv2) recommends a sector map for reporting findings of prostate cancer mulitparametric MRI (mpMRI). Anecdotally, radiologists may demonstrate inconsistent reproducibility with this map. Purpose: To evaluate interobserver agreement in defining prostate tumor location on mpMRI using the PI-RADSv2 sector map. Study Type: Retrospective. Population: Thirty consecutive patients who underwent mpMRI between October, 2013 and March, 2015 and who subsequently underwent prostatectomy with whole-mount processing. Field Strength: 3T mpMRI with T 2 W, diffusion-weighted imaging (DWI) (apparent diffusion coefficient [ADC] and b-2000), dynamic contrast-enhanced (DCE). Assessment: Six radiologists (two high, two intermediate, and two low experience) from six institutions participated. Readers were blinded to lesion location and detected up to four lesions as per PI-RADSv2 guidelines. Readers marked the long-axis of lesions, saved screen-shots of each lesion, and then marked the lesion location on the PI-RADSv2 sector map. Whole-mount prostatectomy specimens registered to the MRI served as ground truth. Index lesions were defined as the highest grade lesion or largest lesion if grades were equivalent. Statistical Test: Agreement was calculated for the exact, overlap, and proportion of agreement. Results: Readers detected an average of 1.9 lesions per patient (range 1.6–2.3). 96.3% (335/348) of all lesions for all readers were scored PI-RADS ≥3. Readers defined a median of 2 (range 1–18) sectors per lesion. Agreement for detecting index lesions by screen shots was 83.7% (76.1%–89.9%) vs. 71.0% (63.1–78.3%) overlap agreement on the PI-RADS sector map (P \u3c 0.001). Exact agreement for defining sectors of detected index lesions was only 21.2% (95% confidence interval [CI]: 14.4–27.7%) and rose to 49.0% (42.4–55.3%) when overlap was considered. Agreement on defining the same level of disease (ie, apex, mid, base) was 61.4% (95% CI 50.2–71.8%). Data Conclusion: Readers are highly likely to detect the same index lesion on mpMRI, but exhibit poor reproducibility when attempting to define tumor location on the PI-RADSv2 sector map. The poor agreement of the PI-RADSv2 sector map raises concerns its utility in clinical practice. Level of Evidence: 3. Technical Efficacy: Stage 2. J. MAGN. RESON. IMAGING 2018;48:482–490

    Interreader variability of prostate imaging reporting and data system version 2 in detecting and assessing prostate cancer lesions at prostate MRI

    No full text
    © American Roentgen Ray Society. OBJECTIVE. The purpose of this study was to evaluate agreement among radiologists in detecting and assessing prostate cancer at multiparametric MRI using Prostate Imaging Reporting and Data System version 2 (PI-RADSv2). MATERIALS AND METHODS. Treatment-na ve patients underwent 3-T multiparametric MRI between April 2012 and June 2015. Among the 163 patients evaluated, 110 underwent prostatectomy after MRI and 53 had normal MRI findings and transrectal ultrasound- guided biopsy results. Nine radiologists participated (three each with high, intermediate, and low levels of experience). Readers interpreted images of 58 patients on average (range, 56-60) using PI-RADSv2. Prostatectomy specimens registered to MRI were ground truth. Interobserver agreement was evaluated with the index of specific agreement for lesion detection and kappa and proportion of agreement for PI-RADS category assignment. RESULTS. The radiologists detected 336 lesions. Sensitivity for index lesions was 80.9% (95% CI, 75.1-85.9%), comparable across reader experience (p = 0.392). Patient-level specificity was experience dependent; highly experienced readers had 84.0% specificity versus 55.2% for all others (p \u3c 0.001). Interobserver agreement was excellent for detecting index lesions (index of specific agreement, 0.871; 95% CI, 0.798-0.923). Agreement on PI-RADSv2 category assignment of index lesions was moderate (= 0.419; 95% CI, 0.238-0.595). For individual category assignments, proportion of agreement was slight for PI-RADS category 3 (0.208; 95% CI, 0.086-0.284) but substantial for PI-RADS category 4 (0.674; 95% CI, 0.540-0.776). However, proportion of agreement for T2-weighted PI-RADS 4 in the transition zone was 0.250 (95% CI, 0.108-0.372). Proportion of agreement for category assignment of index lesions on dynamic contrast-enhanced MR images was 0.822 (95% CI, 0.728-0.903), on T2-weighted MR images was 0.515 (95% CI, 0.430-0623), and on DW images was 0.586 (95% CI, 0.495-0.682). Proportion of agreement for dominant lesion was excellent (0.828; 95% CI, 0.742-0.913). CONCLUSION. Radiologists across experience levels had excellent agreement for detecting index lesions and moderate agreement for category assignment of lesions using PI-RADS. Future iterations of PI-RADS should clarify PI-RADS 3 and PI-RADS 4 in the transition zone
    corecore