32 research outputs found

    An astrocyte-dependent mechanism for neuronal rhythmogenesis

    Full text link
    Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca2+ concentration ([Ca2+]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100b, an astrocytic Ca2+-binding protein, to the extracellular space, while application of an anti-S100b antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity

    High-Density Expression of Ca2+-Permeable ASIC1a Channels in NG2 Glia of Rat Hippocampus

    Get PDF
    NG2 cells, a fourth type of glial cell in the mammalian CNS, undergo reactive changes in response to a wide variety of brain insults. Recent studies have demonstrated that neuronally expressed acid-sensing ion channels (ASICs) are implicated in various neurological disorders including brain ischemia and seizures. Acidosis is a common feature of acute neurological conditions. It is postulated that a drop in pH may be the link between the pathological process and activation of NG2 cells. Such postulate immediately prompts the following questions: Do NG2 cells express ASICs? If so, what are their functional properties and subunit composition? Here, using a combination of electrophysiology, Ca2+ imaging and immunocytochemistry, we present evidence to demonstrate that NG2 cells of the rat hippocampus express high density of Ca2+-permeable ASIC1a channels compared with several types of hippocampal neurons. First, nucleated patch recordings from NG2 cells revealed high density of proton-activated currents. The magnitude of proton-activated current was pH dependent, with a pH for half-maximal activation of 6.3. Second, the current-voltage relationship showed a reversal close to the equilibrium potential for Na+. Third, psalmotoxin 1, a blocker specific for the ASIC1a channel, largely inhibited proton-activated currents. Fourth, Ca2+ imaging showed that activation of proton-activated channels led to an increase of [Ca2+]i. Finally, immunocytochemistry showed co-localization of ASIC1a and NG2 proteins in the hippocampus. Thus the acid chemosensor, the ASIC1a channel, may serve for inducing membrane depolarization and Ca2+ influx, thereby playing a crucial role in the NG2 cell response to injury following ischemia

    Bioprocessing strategies to enhance the challenging isolation of neuro-regenerative cells from olfactory mucosa

    Get PDF
    Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa. With the addition of a 24-hour differential adhesion step, the expression of p75NTR was significantly increased to 73 ± 5% and 46 ± 18% on PDL and laminin matrices respectively. Additionally, the introduction of neurotrophic factor NT-3 and the decrease in serum concentration to 2% FBS resulted in enrichment of OECs, with p75NTR at nearly 100% (100 ± 0% and 98 ± 2% on PDL and laminin respectively), and candidate fibroblast marker Thy1.1 decreased to zero. Culturing OECs at physiologically relevant oxygen tension (2–8%) had a negative impact on p75NTR expression and overall cell survival. Regarding cell potency, co-culture of OECs with NG108-15 neurons resulted in more neuronal growth and potential migration at atmospheric oxygen. Moreover, OECs behaved similarly to a Schwann cell line positive control. In conclusion, this work identified key bioprocessing fundamentals that will underpin future development of OEC-based cell therapies for potential use in spinal cord injury repair. However, there is still much work to do to create optimized isolation methods

    Activity in a premotor cortical nucleus of zebra finches is locally organized and exhibits auditory selectivity in neurons but not in glia

    Get PDF
    Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS) compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations

    The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes

    No full text
    Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex

    Tyrosine phosphatase SHP-2 is a mediator of activity-dependent neuronal excitotoxicity

    No full text
    Calcium influx can promote neuronal differentiation and survival, at least in part by activating Ras and its downstream targets, including the Erk pathway. However, excessive calcium influx can initiate molecular signals leading to neuronal death during excitotoxicity or in neurodegenerative diseases. Here we describe a new signaling pathway associated with calcium influx that contributes to neuronal cell death in cerebellar neurons. Influx of calcium, mediated either by L-type voltage-sensitive calcium channels or glutamate receptors, is associated with the suppression of brain-derived neurotrophic factor (BDNF) activation of Ras and its effectors Erk and Akt. This is the result of enhanced association of the tyrosine phosphatase Shp-2 with TrkB receptors, which inhibits BDNF-induced TrkB autophosphorylation and activation. Deletion of the Shp2 gene in neuronal cultures reverses inhibition of TrkB function and increases neuronal survival after extended depolarization or glutamate treatment. These findings implicate Shp-2 in a feedback system initiated by calcium that negatively regulates neurotrophin signaling and sensitizes neurons to excitotoxicity
    corecore