27 research outputs found

    Low hospital admission rates for respiratory diseases in children

    Get PDF
    BACKGROUND: Population-based data on hospital admissions for children aged 0-17 years concerning all respiratory diseases are scarce. This study examined hospital admissions in relation to the preceding consultations in general practice in this age group. METHODS: Data on children aged 0-17 years with respiratory diseases included in the Second Dutch National Survey of General Practice (DNSGP-2) were linked to all hospital admissions in the Dutch National Medical Registration. Admission rates for respiratory diseases were calculated. Data were analysed using multivariate logistic regression. RESULTS: Of all 79,272 children within the DNSGP-2, 1.8% were admitted to hospital for any respiratory diagnosis. The highest admission rates per 1000 children were for chronic disease of tonsils and adenoids (12.9); pneumonia and influenza (0.97); and asthma (0.92). Children aged 0-4 years and boys were admitted more frequently. Of children with asthma, 2.3% were admitted for respiratory diseases. For asthma, admission rates varied by urbanisation level: 0.47/1000 children/year in cities with ≤ 30,000 inhabitants, 1.12 for cities with ≥ 50,000 inhabitants, and 1.73 for the three largest cities (p = 0.002). Multivariate logistic regression showed that within two weeks after a GP consultation, younger age (OR 0.81, 95% CI 0.76-0.88) and more severe respiratory diseases (5.55, 95% CI 2.99-8.11) predicted hospital admission. CONCLUSIONS: Children in the general population with respiratory diseases (especially asthma) had very low hospital admission rates. In urban regions children were more frequently admitted due to respiratory morbidity. For effectiveness studies in a primary care setting, hospital admission rates should not be used as quality end-point

    The study protocol for a randomized controlled trial of a family-centred tobacco control program about environmental tobacco smoke (ETS) to reduce respiratory illness in Indigenous infants

    Get PDF
    Background: Acute respiratory illness (ARI) is the most common cause of acute presentations and hospitalisations of young Indigenous children in Australia and New Zealand (NZ). Environmental tobacco smoke (ETS) from household smoking is a significant and preventable contributor to childhood ARI. This paper describes the protocol for a study which aims to test the efficacy of a family-centred tobacco control program about ETS to improve the respiratory health of Indigenous infants in Australia and New Zealand. For the purpose of this paper 'Indigenous' refers to Australia's Aboriginal and Torres Strait Islander peoples when referring to Australian Indigenous populations. In New Zealand, the term 'Indigenous' refers to Maori

    Hospitalisation with Infection, Asthma and Allergy in Kawasaki Disease Patients and Their Families: Genealogical Analysis Using Linked Population Data

    Get PDF
    Background: Kawasaki disease results from an abnormal immunological response to one or more infectious triggers. We hypothesised that heritable differences in immune responses in Kawasaki disease-affected children and their families would result in different epidemiological patterns of other immune-related conditions. We investigated whether hospitalisation for infection and asthma/allergy were different in Kawasaki disease-affected children and their relatives. Methods/Major Findings: We used Western Australian population-linked health data from live births (1970-2006) to compare patterns of hospital admissions in Kawasaki disease cases, age- and sex-matched controls, and their relatives. There were 295 Kawasaki disease cases and 598 age- and sex-matched controls, with 1,636 and 3,780 relatives, respectively. Compared to controls, cases were more likely to have been admitted at least once with an infection (cases, 150 admissions (50.8%) vs controls, 210 admissions (35.1%); odds ratio (OR) = 1.9, 95% confidence interval (CI) 1.4-2.6, P = 7.2×10-6), and with asthma/allergy (cases, 49 admissions (16.6%) vs controls, 42 admissions (7.0%); OR = 2.6, 95% CI 1.7-4.2, P = 1.3×10-5). Cases also had more admissions per person with infection (cases, median 2 admissions, 95% CI 1-5, vs controls, median 1 admission, 95% CI 1-4, P = 1.09×10-5). The risk of admission with infection was higher in the first degree relatives of Kawasaki disease cases compared to those of controls, but the differences were not significant. Conclusion: Differences in the immune phenotype of children who develop Kawasaki disease may influence the severity of other immune-related conditions, with some similar patterns observed in relatives. These data suggest the influence of shared heritable factors in these families

    Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIVmac239

    Get PDF
    Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV

    Decreased varicella and increased herpes zoster incidence at a sentinel medical deputising service in a setting of increasing varicella vaccine coverage in Victoria, Australia, 1998 to 2012

    No full text
    We performed an ecological study using sentinel consultation data from a medical deputising service to assess the impact of increasing coverage with childhood varicella vaccine on the incidence risk of varicella and zoster in the population served by the deputising service in Victoria, Australia from 1998 to 2012. Following a successful vaccination programme, the incidence of varicella in Australia was modelled to decrease and the incidence of zoster to increase, based on a theoretical decrease in boosting of zoster immunity following a decrease in wild varicella virus circulation due to vaccination. Incidence risks (consultation proportions for varicella and zoster) were directly age-standardised to the Melbourne population in 2000, when varicella vaccine was first available. Age-standardised varicella incidence risk peaked in 2000 and halved by 2012. Age-standardised zoster incidence risk remained constant from 1998 to 2002, but had almost doubled by 2012. The increase in zoster consultations largely reflected increases in people younger than 50 years-old. Although causality cannot be inferred from ecological studies, it is generally agreed that the decrease in varicella incidence is due to increasing varicella vaccine coverage. The possible indirect effect of the vaccine on zoster incidence is less clear and ongoing monitoring of zoster is required

    Increase in Meningococcal Serogroup W Disease, Victoria, Australia, 2013-2015.

    No full text
    In Victoria, Australia, invasive meningococcal disease caused by Neisseria meningitidis serogroup W increased from 4% of all cases in 2013 to 30% in 2015. This increase resulted largely from strains similar to those in the serogroup W sequence type 11 clonal complex, previously described in the United Kingdom and South America

    A severe 2017 influenza season dominated by influenza A(H3N2), Victoria, Australia

    Get PDF
    Surveillance for influenza-like illness (ILI) and laboratory-confirmed influenza in Victoria, Australia is undertaken jointly by the Victorian Infectious Diseases Reference Laboratory and the Victorian Government Department of Health and Human Services from May to October each year. Surveillance data comprise notifiable laboratory-confirmed influenza and ILI reporting from from two sources - a general practice sentinel surveillance programme and a locum service. The magnitude of the 2017 influenza season was high in Victoria with widespread circulation of influenza type A(H3N2), which peaked in September. A record number of laboratory-confirmed influenza cases were notified, and the proportion of ILI cases to total consultations from both the general practice and locum service were higher than previous years. Notified cases of influenza A were older than influenza B cases with 25% compared to 17% aged more than 65 years, respectively. The proportion of swabs that were positive for influenza peaked at 58%. Antigenic characterization suggested a good match between the circulating and vaccine strains of influenza A(H3N2). Most of the increases observed in notified cases of laboratory-confirmed influenza in recent years in Victoria have been attributed to increases in testing. However, that cases of ILI also increased in Victoria in 2017 is suggestive that 2017 was a relatively severe season. The dominance of influenza type A(H3N2), the extended duration of elevated activity, and a potential phylogenetic mismatch of vaccine to circulating strains are likely to have contributed to the relative severity of the 2017 season. Victoria is Australia's second most populous state and is the mainland's southernmost state. It has a temperate climate with an influenza season usually occurring in the cooler months between May and October. The Victorian Infectious Diseases Reference Laboratory (VIDRL), in partnership with the Victorian Government Department of Health and Human Services (DHHS), coordinates influenza-like illness (ILI) and laboratory-confirmed influenza surveillance in Victoria. There are three data sources included in the influenza surveillance system
    corecore