464 research outputs found
Ionization States and Plasma Structures of Mixed-morphology SNRs Observed with ASCA
We present the results of a systematic study using ASCA of the ionization
state for six ``mixed-morphology'' supernova emnants (MMSNRs): IC 443, W49B,
W28, W44, 3C391, and Kes 27. MMSNRs show centrally filled thermal X-ray
emission, which contrasts to shell-like radio morphology, a set of
haracteristics at odds with the standard model of SNR evolution (e.g., the
Sedov model). We have therefore studied the evolution of the MMSNRs from the
ionization conditions inferred from the X-ray spectra, independent of X-ray
morphology. We find highly ionized plasmas approaching ionization equilibrium
in all the mmsnrs. The degree of ionization is systematically higher than the
plasma usually seen in shell-like SNRs. Radial temperature gradients are also
observed in five remnants, with cooler plasma toward the limb. In IC 443 and
W49B, we find a plasma structure consistent with shell-like SNRs, suggesting
that at least some MMSNRs have experienced similar evolution to shell-like
SNRs. In addition to the results above, we have discovered an ``overionized''
ionization state in W49B, in addition to that previously found in IC 443.
Thermal conduction can cause the hot interior plasma to become overionized by
reducing the temperature and density gradients, leading to an interior density
increase and temperature decrease. Therefore, we suggest that the
``center-filled'' X-ray morphology develops as the result of thermal
conduction, and should arise in all SNRs. This is consistent with the results
that MMSNRs are near collisional ionization equilibrium since the conduction
timescale is roughly similar to the ionization timescale. Hence, we conclude
that MMSNRs are those that have evolved over yr. We call this phase
as the ``conduction phase.''Comment: 34 pages, 20 figures, 9 tables, accepted for publication in The
Astrophysical Journa
Cold Dust in Kepler's Supernova Remnant
The timescales to replenish dust from the cool, dense winds of Asymptotic
Giant Branch stars are believed to be greater than the timescales for dust
destruction. In high redshift galaxies, this problem is further compounded as
the stars take longer than the age of the Universe to evolve into the dust
production stages. To explain these discrepancies, dust formation in supernovae
(SNe) is required to be an important process but until very recently dust in
supernova remnants has only been detected in very small quantities. We present
the first submillimeter observations of cold dust in Kepler's supernova remnant
(SNR) using SCUBA. A two component dust temperature model is required to fit
the Spectral Energy Distribution (SED) with K and K. The total mass of dust implied for Kepler is -
1000 times greater than previous estimates. Thus SNe, or their progenitors may
be important dust formation sites.Comment: 12 pages, 2 figures, accepted to ApJL, corrected proof
Period change of Superhumps in the WZ Sge-Type Dwarf Nova, HV Virginis
After 10 years of quiescence, HV Vir underwent a superoutburst in January
2002. We report time-series observations clearly revealing the period change of
ordinary superhumps during the superoutburst. We derived a mean superhump
period of 0.058260 d and a positive period derivative of .
These results are in good agreement with the value obtained from the 1992
superoutburst. We also detected early superhumps, which were not clearly
recognized in the past outburst, and a possible rebrightening. Both of them are
the common characteristics of WZ Sge-type stars.Comment: 9 pages, 8 figures. Accepted for publication in PAS
A Deep Chandra Observation of Kepler's Supernova Remnant: A Type Ia Event with Circumstellar Interaction
We present initial results of a 750 ks Chandra observation of the remnant of
Kepler's supernova of AD 1604. The strength and prominence of iron emission,
together with the absence of O-rich ejecta, demonstrate that Kepler resulted
from a thermonuclear supernova, even though evidence for circumstellar
interaction is also strong. We have analyzed spectra of over 100 small regions,
and find that they fall into three classes. (1) The vast majority show Fe L
emission between 0.7 and 1 keV and Si and S K alpha emission; we associate
these with shocked ejecta. A few of these are found at or beyond the mean blast
wave radius. (2) A very few regions show solar O/Fe abundance rations; these we
associate with shocked circumstellar medium (CSM). Otherwise O is scarce. (3) A
few regions are dominated by continuum, probably synchrotron radiation.
Finally, we find no central point source, with a limit about 100 times fainter
than the central object in Cas A. The evidence that the blast wave is
interacting with CSM may indicate a Ia explosion in a more massive progenitor.Comment: Accepted by ApJ Letter
A Massive Jet Ejection Event from the Microquasar SS 433 Accompanying Rapid X-Ray Variability
Microquasars occasionally exhibit massive jet ejections which are distinct
from the continuous or quasi-continuous weak jet ejections. Because those
massive jet ejections are rare and short events, they have hardly been observed
in X-ray so far. In this paper, the first X-ray observation of a massive jet
ejection from the microquasar SS 433 with the Rossi X-ray Timing Explorer
(RXTE) is reported. SS 433 undergoing a massive ejection event shows a variety
of new phenomena including a QPO-like feature near 0.1 Hz, rapid time
variability, and shot-like activities. The shot-like activity may be caused by
the formation of a small plasma bullet. A massive jet may be consist of
thousands of those plasma bullets ejected from the binary system. The size,
mass, internal energy, and kinetic energy of the bullets and the massive jet
are estimated.Comment: 21 pages including 5 figures, submitted to Ap
The Earliest Optical Observations of GRB 030329
We present the earliest optical imaging observations of GRB 030329 related to
SN 2003dh. The burst was detected by the HETE-2 satellite at 2003 March 29,
11:37:14.67 UT. Our wide-field monitoring started 97 minutes before the trigger
and the burst position was continuously observed. We found no precursor or
contemporaneous flare brighter than () in 32 s (64 s) timescale
between 10:00 and 13:00 UT. Follow-up time series photometries started at
12:51:39 UT (75 s after position notice through the GCN) and continued for more
than 5 hours. The afterglow was at min after burst.
Its fading between 1.2 and 6.3 hours is well characterized by a single
power-law of the form in -band. No significant flux variation was
detected and upper limits are derived as % in
minutes to hours timescales and % in seconds to
minutes timescales. Such a featureless lightcurve is explained by the smooth
distribution of circumburst medium. Another explanation is that the optical
band was above the synchrotron cooling frequency where emergent flux is
insensitive to the ambient density contrasts. Extrapolation of the afterglow
lightcurve to the burst epoch excludes the presence of an additional flare
component at minutes as seen in GRB 990123 and GRB 021211.Comment: ApJL, in pres
A Luminous and Fast-Expanding Type Ib Supernova SN 2012au
We present a set of photometric and spectroscopic observations of a bright
Type Ib supernova SN 2012au from -6d until ~+150d after maximum. The shape of
its early R-band light curve is similar to that of an average Type Ib/c
supernova. The peak absolute magnitude is M_R=-18.7+-0.2 mag, which suggests
that this supernova belongs to a very luminous group among Type Ib supernovae.
The line velocity of He I {\lambda}5876 is about 15,000 km/s around maximum,
which is much faster than that in a typical Type Ib supernova. From the
quasi-bolometric peak luminosity of (6.7+-1.3)x10^(42) erg/s, we estimate the
\Ni mass produced during the explosion as ~0.30 Msun. We also give a rough
constraint to the ejecta mass 5-7 Msun and the kinetic energy (7-18)x10^(51)
erg. We find a weak correlation between the peak absolute magnitude and He I
velocity among Type Ib SNe. The similarities to SN 1998bw in the density
structure inferred from the light curve model as well as the large peak
bolometric luminosity suggest that SN 2012au had properties similar to
energetic Type Ic supernovae.Comment: 15 pages, 5 figures; accepted to ApJ
A flattening in the Optical Light Curve of SN 2002ap
We present the broad band optical photometry of the Type Ic
supernova SN 2002ap obtained during 2002 February 06 -- March 23 in the early
decline phases and also later on 2002 15 August. Combining these data with the
published ones, the general light curve development is studied. The time and
luminosity of the peak brightness and the peak width are estimated. There is a
flattening in the optical light curve about 30 days after the maximum. The
flux decline rates before flattening are 0.1270.005, 0.0820.001,
0.0740.001, 0.0620.001 and 0.0400.001 mag day in ,
, , and passbands respectively, while the corresponding
values after flattening are about 0.02 mag day in all the passbands. The
maximum brightness of SN 2002ap mag, is comparable to that of
the type Ic 1997ef, but fainter than that of the type Ic hypernova SN 1998bw.
The peak luminosity indicates an ejection of 0.06 M
Ni mass.
We also present low-resolution optical spectra obtained during the early
phases.
The SiII absorption minimum indicates that the photospheric velocity
decreased from
21,360 km s to 10,740 km s during a period of 6
days.Comment: 7 pages, 5 figures, Submitted to MNRA
Observation of the first gravitational microlensing event in a sparse stellar field : the Tago event
We report the observation of the first gravitational microlensing event in a
sparse stellar field, involving the brightest (V=11.4 mag) andclosest (~ 1 kpc)
source star to date. This event was discovered by an amateurastronomer, A.
Tago, on 2006 October 31 as a transient brightening, by ~4.5 mag during a ~15
day period, of a normal A-type star (GSC 3656-1328) in the Cassiopeia
constellation. Analysis of both spectroscopic observations and the light curve
indicates that this event was caused by gravitational microlensing rather than
an intrinsically variable star. Discovery of this single event over a 30 year
period is roughly consistent with the expected microlensing rate for the whole
sky down to V = 12 mag stars. However, the probability for finding events with
such a high magnification (~ 50) is much smaller, by a factor ~1/50, which
implies that the true event rate may be higher than expected. This discovery
indicates the potential of all sky variability surveys, employing frequent
sampling by telescopes with small apertures and wide fields of view, for
finding such rare transient events, and using the observations to explore
galactic disk structure and search for exo-planets.Comment: 13 pages, 2 tables, 3 figures, accepted by Ap
Gamma-ray emission expected from Kepler's SNR
Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova
remnants (SNRs) is used to investigate the properties of Kepler's SNR and, in
particular, to predict the gamma-ray spectrum expected from this SNR.
Observations of the nonthermal radio and X-ray emission spectra as well as
theoretical constraints for the total supernova (SN) explosion energy E_sn are
used to constrain the astronomical and particle acceleration parameters of the
system. Under the assumption that Kepler's SN is a type Ia SN we determine for
any given explosion energy E_sn and source distance d the mass density of the
ambient interstellar medium (ISM) from a fit to the observed SNR size and
expansion speed. This makes it possible to make predictions for the expected
gamma-ray flux. Exploring the expected distance range we find that for a
typical explosion energy E_sn=10^51 erg the expected energy flux of TeV
gamma-rays varies from 2x10^{-11} to 10^{-13} erg/(cm^2 s) when the distance
changes from d=3.4 kpc to 7 kpc. In all cases the gamma-ray emission is
dominated by \pi^0-decay gamma-rays due to nuclear CRs. Therefore Kepler's SNR
represents a very promising target for instruments like H.E.S.S., CANGAROO and
GLAST. A non-detection of gamma-rays would mean that the actual source distance
is larger than 7 kpc.Comment: 6 pages, 4 figures. Accepted for publication in Astronomy and
Astrophysics, minor typos correcte
- …
