56 research outputs found

    Metastable Vacua in Superconformal SQCD-like Theories

    Get PDF
    We study dynamical supersymmetry breaking in vector-like superconformal N=1 gauge theories. We find appropriate deformations of the superpotential to overcome the problem of the instability of the non supersymmetric vacuum. The request for long lifetime translates into constraints on the physical couplings which in this regime can be controlled through efficient RG analysis.Comment: 17 pages, 7 figures, JHEP3.cl

    Higgs Portal to Visible Supersymmetry Breaking

    Get PDF
    We propose a supersymmetric extension of the standard model whose Higgs sector induces a spontaneous supersymmetry breaking by itself. Unlike the minimal extension, the current Higgs mass bound can be evaded even at the tree-level without the help of the soft breaking terms due to the usual hidden sector, as is reminiscent of the next to minimal case. We also have a possibly light pseudo-goldstino in our visible sector in addition to extra Higgs particles, both of which stem from supersymmetry breaking dynamics. In such a setup of visible supersymmetry breaking, we may see a part of supersymmetry breaking dynamics rather directly in future experiments.Comment: 23 pages, 6 figures, references adde

    Aspects of Non-minimal Gauge Mediation

    Full text link
    A large class of non-minimal gauge mediation models, such as (semi-)direct gauge mediation, predict a hierarchy between the masses of the supersymmetric standard model gauginos and those of scalar particles. We perform a comprehensive study of these non-minimal gauge mediation models, including mass calculations in semi-direct gauge mediation, to illustrate these features, and discuss the phenomenology of the models. We point out that the cosmological gravitino problem places stringent constraints on mass splittings, when the Bino is the NLSP. However, the GUT relation of the gaugino masses is broken unlike the case of minimal gauge mediation, and an NLSP other than the Bino (especially the gluino NLSP) becomes possible, relaxing the cosmological constraints. We also discuss the collider signals of the models.Comment: 56 pages, 8 figures; v2:minor corrections, references added; v3:minor correction

    The Spectrum of Goldstini and Modulini

    Get PDF
    When supersymmetry is broken in multiple sectors via independent dynamics, the theory furnishes a corresponding multiplicity of "goldstini" degrees of freedom which may play a substantial role in collider phenomenology and cosmology. In this paper, we explore the tree-level mass spectrum of goldstini arising from a general admixture of F-term, D-term, and almost no-scale supersymmetry breaking, employing non-linear superfields and a novel gauge fixing for supergravity discussed in a companion paper. In theories of F-term and D-term breaking, goldstini acquire a mass which is precisely twice the gravitino mass, while the inclusion of no-scale breaking renders one of these modes, the modulino, massless. We argue that the vanishing modulino mass can be explained in terms of an accidental and spontaneously broken "global" supersymmetry.Comment: 10 pages, 2 figures; v2: typo corrected, references updated; v3: version to appear in JHE

    SU(7) Unification of SU(3)_C*SU(4)_W* U(1)_{B-L}

    Get PDF
    We propose the SUSY SU(7) unification of the SU(3)_C* SU(4)_W* U(1)_{B-L} model. Such unification scenario has rich symmetry breaking chains in a five-dimensional orbifold. We study in detail the SUSY SU(7) symmetry breaking into SU(3)_C* SU(4)_W* U(1)_{B-L} by boundary conditions in a Randall-Sundrum background and its AdS/CFT interpretation. We find that successful gauge coupling unification can be achieved in our scenario. Gauge unification favors low left-right and unification scales with tree-level \sin^2\theta_W=0.15. We use the AdS/CFT dual of the conformal supersymmetry breaking scenario to break the remaining N=1 supersymmetry. We employ AdS/CFT to reproduce the NSVZ formula and obtain the structure of the Seiberg duality in the strong coupling region for 3/2N_c<N_F<3N_C. We show that supersymmetry is indeed broken in the conformal supersymmetry breaking scenario with a vanishing singlet vacuum expectation value.Comment: 25 pages, 1 figure

    (Extra)Ordinary Gauge/Anomaly Mediation

    Full text link
    We study anomaly mediation models with gauge mediation effects from messengers which have a general renormalizable mass matrix with a supersymmetry-breaking spurion. Our models lead to a rich structure of supersymmetry breaking terms in the visible sector. We derive sum rules among the soft scalar masses for each generation. Our sum rules for the first and second generations are the same as those in general gauge mediation, but the sum rule for the third generation is different because of the top Yukawa coupling. We find the parameter space where the tachyonic slepton problem is solved. We also explore the case in which gauge mediation causes the anomalously small gaugino masses. Since anomaly mediation effects on the gaugino masses exist, we can obtain viable mass spectrum of the visible sector fields.Comment: 24 pages, 10 figure

    General Gauge Mediation with Gauge Messengers

    Get PDF
    We generalize the General Gauge Mediation formalism to allow for the possibility of gauge messengers. Gauge messengers occur when charged matter fields of the susy-breaking sector have non-zero F-terms, which leads to tree-level, susy-breaking mass splittings in the gauge fields. A classic example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge messengers. We give a completely general, model independent, current-algebra based analysis of gauge messenger mediation of susy-breaking to the visible sector. Characteristic aspects of gauge messengers include enhanced contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated already at one loop, and also at two loops, and significant one-loop A-terms, already at the messenger scale.Comment: 79 pages, 5 figure

    Superconformal Flavor Simplified

    Get PDF
    A simple explanation of the flavor hierarchies can arise if matter fields interact with a conformal sector and different generations have different anomalous dimensions under the CFT. However, in the original study by Nelson and Strassler many supersymmetric models of this type were considered to be 'incalculable' because the R-charges were not sufficiently constrained by the superpotential. We point out that nearly all such models are calculable with the use of a-maximization. Utilizing this, we construct the simplest vector-like flavor models and discuss their viability. A significant constraint on these models comes from requiring that the visible gauge couplings remain perturbative throughout the conformal window needed to generate the hierarchies. However, we find that there is a small class of simple flavor models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications, references adde
    • 

    corecore