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Abstract: We propose the SUSY SU(7) unification of the SU(3)C ×SU(4)W ×U(1)B−L

model. Such unification scenario has rich symmetry breaking chains in a five-dimensional

orbifold. We study in detail the SUSY SU(7) symmetry breaking into SU(3)C×SU(4)W ×
U(1)B−L by boundary conditions in a Randall- Sundrum background and its AdS/CFT

interpretation. We find that successful gauge coupling unification can be achieved in

our scenario. Gauge unification favors low left-right and unification scales with tree-level

sin2 θW = 0.15. We use the AdS/CFT dual of the conformal supersymmetry breaking sce-

nario to break the remaining N = 1 supersymmetry. We employ AdS/CFT to reproduce

the NSVZ formula and obtain the structure of the Seiberg duality in the strong coupling

region for 3
2Nc < NF < 3NC . We show that supersymmetry is indeed broken in the

conformal supersymmetry breaking scenario with a vanishing singlet vacuum expectation

value.
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1. Introduction

The standard model (SM) of electroweak interactions, based on the spontaneously broken

SU(2)L×U(1)Y gauge symmetry, has been extremely successful in describing phenomena

below the weak scale. However, the SM leaves some theoretical and aesthetical questions

unanswered, two of which are the origin of parity violation and the smallness of neutrino

masses. Both of these questions can be addressed in the left-right model based on the

SU(2)L × SU(2)R × U(1)B−L gauge symmetry [1]. The supersymmetric extension of this

model [2] is especially intriguing since it automatically preserves R-parity. This can lead

to a low energy theory without baryon number violating interactions after R-parity is

spontaneously broken. However, in such left-right models parity invariance and the equality

of the SU(2)L and SU(2)R gauge couplings is ad hoc and has to be imposed by hand. Only

in Grand Unified Theories (GUTs) [3, 4] can the equality of the two SU(2) gauge couplings

be naturally guaranteed through gauge coupling unification.

Novel attempts for the unification of the left-right symmetries have been proposed in

the literature, such as the SU(3)C ×SU(4)W ×U(1)B−L [5, 6, 7] or SU(3)C ×SU(4)W [8].

In these attempts, the equality of the left-right gauge couplings and the parity in the left-

right model are understood by partial unification. In this work, we propose to embed the

SU(3)C ×SU(4)W ×U(1)B−L partially unified model into an SU(7) GUT. Unfortunately,

the doublet-triplet splitting problem exists in various GUT models. An elegant solution

to this is to invoke a higher dimensional space-time and to break the GUT symmetry

by boundary conditions such as orbifold projection. Orbifold GUT models for SU(5) were

proposed in [9, 10, 11] and widely studied thereafter in [12, 13, 14, 15, 16, 17, 18, 19, 20]. The

embedding of the supersymmetric GUT group into the Randall-Sundrum (RS) model [21]

with a warped extra dimension is especially interesting since it has a four-dimensional

(4D) conformal field theory (CFT) interpretation [22, 23]. By assigning different symmetry

breaking boundary conditions to the two fixed point, the five-dimensional (5D) theory is

interpreted to be the dual of a 4D technicolor-like theory or a composite gauge symmetry

model.

It is desirable to introduce supersymmetry in warped space-time[24] because we can

not only stabilize the gauge hierarchy by supersymmetry but also set the supersymmetry

broken scale by warping. It is well known that supersymmetry (SUSY) can be broken by

selecting proper boundary conditions in the high dimensional theory. For example, 5D

N = 1 supersymmetry, which amounts to N = 2 supersymmetry in 4D, can be broken to

4D N = 1 supersymmetry by orbifold projection. Various mechanisms can be used to break

the remaining N = 1 supersymmetry. One intriguing possibility is the recently proposed

conformal supersymmetry breaking mechanism [25, 26] in vector-like gauge theories which

can be embedded into a semi-direct gauge mediation model. Such a semi-direct gauge

mediation model can be very predictive having only one free parameter. It is interesting

to recast it in a warped extra dimension via the Anti-de Sitter/Conformal Field Theory

(AdS/CFT) correspondence [27], and use it to break the remaining supersymmetry.

This paper is organized as follows. In Section 2, as a warm up, we discuss the SUSY

SU(7) orbifold GUT model and its symmetry breaking chains in a flat extra dimension.
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In Section 3, we present the SUSY SU(7) GUT model with a warped extra dimension and

its 4D CFT dual interpretation. In Section 4 we consider gauge coupling unification in

the RS background. In Section 5 we discuss the AdS/CFT dual of the semi-direct gauge

mediation model in the conformal window in vector-like gauge theories. Section 6 contains

our conclusions.

2. SUSY SU(7) Unification in a Flat Extra Dimension

We consider M4×S1/Z2, the 5D space-time comprising of the Minkowski space M4 with

coordinates xµ and the orbifold S1/Z2 with coordinate y ≡ x5. The orbifold S1/Z2 is

obtained from S1 by moduling the equivalent classes

Z5 : y → −y . (2.1)

There are two inequivalent 3-branes located at y = 0 and y = πR, denoted by O and O′,

respectively.

The 5D N = 1 supersymmetric gauge theory has 8 real supercharges, corresponding

to N = 2 SUSY in 4D. The vector multiplet contains a vector boson AM (M = 0, 1, 2, 3, 5),

two Weyl gauginos λ1,2, and a real scalar σ. From the 4D N = 1 point of view, it contains

a vector multiplet V (Aµ, λ1) and a chiral multiplet Σ((σ + iA5)/
√
2, λ2) which transform

in the adjoint representation of the gauge group. The 5D hypermultiplet contains two

complex scalars φ and φc, a Dirac fermion Ψ, and can be decomposed into two 4D chiral

mupltiplets Φ(φ,ψ ≡ ΨR) and Φc(φc, ψc ≡ ΨL), which are conjugates of each other under

gauge transformations. The general action for the gauge fields and their couplings to the

bulk hypermultiplet Φ is [28, 29]

S =

∫

d5x
1

kg2
Tr

[
1

4

∫

d2θ (WαWα +H.C.)

+

∫

d4θ
(

(
√
2∂5 + Σ̄)e−V (−

√
2∂5 +Σ)eV + ∂5e

−V ∂5e
V
)]

+

∫

d5x

[∫

d4θ
(
ΦceV Φ̄c + Φ̄e−V Φ

)

+

∫

d2θ

(

Φc(∂5 −
1√
2
Σ)Φ + H.C.

)]

. (2.2)

We introduce the following orbifold projections

Z5 : x5 → −x5 , T5 : x5 → x5 + 2πR5 , (2.3)

and use them to impose the following boundary conditions on vector and hypermultiplets

in terms of the fundamental representation

V (−x5) = Z5V (x5)Z5 , Σ5(−x5) = −Z5Σ5(x5)Z5 , (2.4)

Φ(−x5) = ηΦZ5Φ(x5) , Φc(−x5) = −ηΦZ5Φ(x5) , (2.5)
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and

V (x5 + 2πR5) = T5V (x5)T5 , Σ5(x5 + 2πR5) = T5Σ5(x5)T5 , (2.6)

Φ(x5 + 2πR5) = ζΦT5Φ(x5) , Φc(x5 + 2πR) = ζΦT5Φ(x5) , (2.7)

with ηΦ = ±1, and ζΦ = ±1. The 5D N = 1 supersymmetry, which corresponds to 4D

N = 2 SUSY, reduces to 4D N = 1 supersymmetry after the Z5 projection.

It is well known that we can have different gauge symmetries at the two fixed points

by assigning different boundary conditions. We can rewrite (Z5, T5) in terms of (Z5, Z6)

by introducing the transformation

Z6 = T5Z5 , (2.8)

which gives

Z6 : y + πR→ −y + πR . (2.9)

Then the massless zero modes can preserve different gauge symmetries which are obtained

by assigning proper (Z5, Z6) boundary conditions to the two fixed points.

In our setup, as a warm up, we consider a SU(7) gauge symmetry in the 5D bulk of

M4 × S1/Z2. This implies the following different symmetry breaking possibilities.

• Case I:

Z5 = I4,−3 , Z6 = I1,−6 , (2.10)

where Ia,−b denotes the diagonal matrix with the first a entries 1 and the last b

entries −1. These boundary conditions break the SU(7) gauge symmetry down to

SU(4)W × SU(3)C ×U(1)B−L at the fixed point y = 0, to SU(6)×U(1)×U(1)X at

the fixed point y = πR5, and preserve SU(3)C × SU(3)L × U(1)× U(1)X in the low

energy 4D theory.

• Case II:

Z5 = I4,−3 , Z6 = I2,−5 , (2.11)

which break the gauge symmetry SU(7) to SU(4)w×SU(3)C ×U(1)B−L at the fixed

point y = 0, to SU(5) × SU(2) × U(1)X at the fixed point y = πR5, and preserve

SU(3)C × SU(2)L × SU(2)R × U(1)B−L × U(1)X in the low energy 4D theory.

• Case III:

Z5 = I4,−3 , Z6 = I3,−4 , (2.12)

which break SU(7) to SU(4)w × SU(3)C × U(1)B−L at the fixed point y = 0, to

SU(3)×SU(4)c×U(1)X at the fixed point y = πR5, and preserve SU(3)C×SU(3)L×
U(1)× U(1)X in the low energy 4D theory.
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• Case IV:

Z5 = I1,−6 , Z6 = I2,−5 , (2.13)

which break SU(7) to SU(6)×U(1) at the fixed point y = 0, to SU(5)×SU(2)×U(1)X
at the fixed point y = πR5 which preserves SU(5)×U(1)×U(1)X in the low energy

4D theory.

• Case V:

Z5 = I1,−6 , Z6 = I4,−3 , (2.14)

which break SU(7) to SU(6)× U(1) at the fixed point y = 0, to SU(3)C × SU(4)×
U(1)X at the fixed point y = πR5, and preserve SU(3)C × SU(3)L ×U(1) in the low

energy 4D theory.

We will not discuss these various symmetry breaking chains in detail, we simply note that

several interesting low energy theories can be embedded into a 5D SU(7) gauge theory. To

construct a realistic theory, we must also introduce the proper matter content. The simplest

possibility to introduce matter in this scenario is to localize it at the fixed point branes

and fitting it into multiplets of the corresponding gauge symmetry preserved in the given

brane. Bulk fermions which are SU(7) invariant are possible in case Z5 or Z6 is trivial.

For most general boundary conditions, bulk fermions do not always lead to realistic low

energy matter content. In our case, the motivation for the SU(7) gauge symmetry is the

unification of SU(3)C ×SU(4)w ×U(1)B−L. Thus, we will discuss in detail this symmetry

breaking chain and the matter content of this scenario.

The compactification of gauge symmetry in flat and warped extra dimensions share

many common features. Consequently, we will concentrate on the orbifold breaking of

SU(7) in a warped extra dimension and discuss its AdS/CFT interpretation. The flat

extra dimension results can be obtained by taking the AdS curvature radius to infinity.

3. SUSY SU(7) Unification in Warped Extra Dimension

We consider the AdS5 space warped on S1/Z2 with SU(7) bulk gauge symmetry. The AdS

metric can be written as

ds2 = e−2σηµνdx
µdxν + dy2 , (3.1)

where σ = k|y|, 1/k is the AdS curvature radius, and y is the coordinate in the extra

dimension with the range 0 ≤ y ≤ πR. Here we assume that the warp factor e−kπR scales

ultra-violet (UV) masses to TeV.

As noted in [30], in AdS space the different fields within the same supersymmetric

multiplets acquire different masses. The action for bulk vector multiplets (VM , λ
i,Σ) and

hypermultiplets (H i,Ψ) can be written as [31, 32, 33]

S5 = −1

2

∫

d4x

∫

dy
√−g

[

1

2g25
F 2
MN + (∂MΣ)2 + iλ̄iγMDMλ

i +m2
ΣΣ

2 ,
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+ imλλ̄i(σ3)
ijλj +

∣
∣∂MH

i
∣
∣
2
+ iΨ̄γMDMΨ+m2

Hi |H i|2 ,

+ imΨΨ̄Ψ

]

, (3.2)

with supersymmetry preserving mass terms for vector multiplets

m2
Σ = −4k2 + 2σ′′ , (3.3)

mλ =
1

2
σ′ , (3.4)

and for hypermultiplets

m2
H1,2 = (c2 ± c− 15

4
)k2 +

(
3

2
∓ c

)

σ′′ , (3.5)

mΨ = cσ′ . (3.6)

We introduce the generic notation

m2
φ = ak2 + bσ′′ , (3.7)

mψ = cσ′ , (3.8)

for the AdS mass terms of bosons (φ) and fermions (ψ) with

σ′ =
dσ

dy
= kǫ(y) , (3.9)

σ′′ = 2k [δ(y)− δ(y − πR)] , (3.10)

where the step function is defined as ǫ(y) = +1 (−1) for positive (negative) y. With this

notation, we can parametrize the bulk mass terms for vector multiplets as

a = −4 , b = 2 , c =
1

2
, (3.11)

and for hypermultiplets as

a = c2 ± c− 15

4
, b =

3

2
∓ c . (3.12)

The parameter c controls the zero mode wave function profiles [32, 34]. When c > 1/2,

the massless modes will be localized towards the y = 0 (UV) brane. The larger the value

of c the stronger is the localization. On the other hand, when c < 1/2, the zero modes

will be localized towards the y = πR (IR) boundary. Kaluza-Klein (KK) modes localized

near the IR brane, according to the AdS/CFT dictionary, correspond dominantly to CFT

bound states.

The SU(7) gauge symmetry can be broken into SU(3)C × SU(4)W ×U(1)B−L by the

Higgs mechanism or by boundary conditions. The spontaneous breaking of SU(7) will lead

to the doublet-triplet (D-T) splitting problem. Thus, it is advantageous to consider the

breaking of the gauge symmetry via boundary conditions which elegantly eliminates the
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D-T splitting problem. We chose the following boundary conditions in terms of Z5 and Z6

parity

Z5 = (+1 ,+1 ,+1 ,−1 ,−1 ,−1 ,−1 ) , (3.13)

Z6 = (+1 ,+1 ,+1 ,+1 ,+1 ,+1 ,+1 ) , (3.14)

which break SU(7) to SU(3)C × SU(4)W × U(1)B−L at the fixed point y = 0. The parity

assignments of SU(7) vector supermultiplets in terms of (Z5, Z6) are

V g(48) = V ++
(8,1)0

⊕ V ++
(1,15)0

⊕ V ++
(1,1)0

⊕ V −+
(3,4̄)7/3

⊕ V −+
(3̄,4)−7/3

,

Σg(48) = Σ−−
(8,1)0

⊕ Σ−−
(1,15)0

⊕ Σ−−
(1,1)0

⊕ Σ+−
(3,4̄)7/3

⊕ Σ+−
(3̄,4)−7/3

, (3.15)

where the lower indices show the SU(3)C × SU(4)W × U(1)B−L quantum numbers. After

KK decomposition, only the N = 1 SUSY SU(3)C × SU(4)W × U(1)B−L components of

the vector multiplet V g have zero modes. Kaluza-Klein modes which have warped masses

of order MUV e
−kπR ∼ TeV are localized towards the symmetry preserving IR brane, so

they are approximately SU(7) symmetric.

It is also possible to break the gauge symmetry on the y = πR brane (by interchanging

Z5 and Z6) which will have a different 4D CFT dual description in contrast to the previous

case. If SU(7) breaks to SU(3)×SU(4)W×U(1)B−L on the IR brane, the dual description is

a technicolor-like theory in which SU(7) is broken to SU(3)×SU(4)W ×U(1)B−L by strong

dynamics at the TeV scale. In case the gauge symmetry is broken on the UV brane, the dual

descriptions is a theory with SU(7) global symmetry and a weakly interacting SU(3) ×
SU(4)W × U(1)B−L gauge group at the UV scale. The IR brane with a spontaneously

broken conformal symmetry respects the SU(7) gauge group. In this scenario, the SU(7)

gauge symmetry is composite(emergent) which is similar to the rishon model [43]. In order

to reproduce the correct Weinberg angle sin2 θW , it is in general not advantageous to break

the GUT symmetry on the IR brane because, from the AdS/CFT correspondence, the

running of the gauge couplings is SU(7) invariant at the TeV scale.

It is possible to strictly localize matter on the UV brane that preserves the SU(3) ×
SU(4)W ×U(1)B−L gauge symmetry. However, in this case we will not get a prediction of

the weak mixing angle because we lack the absolute normalization factor of the hypercharge

of the SM particles.1 Thus it is preferable to place matter in SU(7) multiplets into the

5D bulk so it can be approximately localized towards the UV brane by introducing bulk

mass terms. In this case, the U(1)B−L charges of matter are quantized according to SU(7)

multiplet assignments and we could understand the observed electric charge quantization

of the Universe.

We arrange quark supermultiplets into 28,28 symmetric SU(7) representations and

lepton multiplets into 7, 7̄ representations

QX(28)a =

(

(6,1)8/3 (3,4)1/3
(3,4)1/3 (1,10)−2

)

, (3.16)

1The relative normalization within the matter sector is determined by anomaly cancellation requirements.
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QX(28)a =

(

(6̄,1)−8/3 (3̄, 4̄)−1/3

(3̄, 4̄)−1/3 (1,10)2

)

, (3.17)

LX(7)a = (3,1)4/3 ⊕ (1,4)−1 , (3.18)

LX(7̄)a = (3̄,1)−4/3 ⊕ (1, 4̄)1 , (3.19)

with the subscript a being the family index.

To obtain zero modes for chiral quark and lepton multiplets, we assign the following

(Z5, Z6) parities to them

QX(28)a = (6,1)−,+
8/3 ⊕ (1,10)−,+−2 ⊕ (3,4)+,+

1/3 , (3.20)

QX(28)a = (6̄,1)−,+−8/3 ⊕ (1,10)−,+2 ⊕ (3̄, 4̄)+,+−1/3 , (3.21)

LX(7)a = (3,1)−,+
4/3 ⊕ (1,4)+,+−1 , (3.22)

LX(7̄)a = (3̄,1)−,+−4/3 ⊕ (1, 4̄)+,+1 . (3.23)

Parity assignments for the conjugate fields Φc are opposite to those for Φ.

Because of the unification of SU(3)C × SU(4)W × U(1)B−L into SU(7), we can de-

termine the normalization of the U(1)B−L charge based on the the matter sector charge

assignments in the fundamental representation of SU(7)

QB−L = ( 4/3, 4/3, 4/3,−1,−1,−1,−1) . (3.24)

Then from the relation of the gauge couplings

gB−L
QB−L

2
= g7T

B−L , (3.25)

we obtain

gB−L =

√

3

14
g7 . (3.26)

Here we normalize the SU(7) generator as

Tr(T aT b) =
1

2
δab . (3.27)

Thus the tree-level weak mixing angle can be predicted to be

sin2 θW ≡ g2Y
g2Y + g2L

=
3

20
= 0.15 . (3.28)

In previous SUSY SU(7) unification scenario with quark contents fitting in 28,28

dimensional representations, there is no ordinary proton decay problem related to heavy

gauge boson exchanges (D-type operators) and dimension-five operators which can be seen

from the charge assignments of the SU(7) matter multiplets. Contributions from dimension

four operators of the form λijk(QX)i(LX)j(LX)k + λ̃ijk(QX)i(LX)j(LX)k can be forbid-

den by R-parity. However, it is also possible to fit the quark sectors in 21,21 dimensional
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representations of SU(7) instead of 28,28 dimensional representations. Then dangerous

IR-brane localized dimension five F-type operators of the form

L =

∫

d2θ
1

M
[λ1ijkl(QX)i(QX)j(QX)k(LX)l + λ2ijkl(QX)i(QX)j(QX)k(LX)l],

can be introduced. Such dimension five operators can arise from a diagram involving the

coupling of matter to the 35,35 Higgs multiplet and the insertion of µ-term like mass terms

for such Higgs fields. If matter is localized towards the IR brane, then the suppression scale

M is of order TeV and this results in rapid proton decay. Since the profile of zero modes

for bulk matter with c & 1/2 is

φ
(0)
+ ∼ e−(c− 1

2
)ky , (3.29)

we could assign bulk mass terms to matter with c & 1/2 to suppress the decay rates. Then

for an IR brane localized dimension five operator, we require

1

(TeV)
e
−

∑

i
(ci−

1
2
)kπR

.
10−8

MP l
≈ e−3kπR/2

(TeV)
, (3.30)

which satisfies proton decay bounds [35]. However such requirements will lead to difficulty

in giving natural Yukawa couplings. So we consider only the case with quark sector fitting

in 28 and 28 dimensional representations.

There are several ways to introduce Yukawa couplings. Orbifold GUTs are well known

to solve the D-T splitting problem by assigning appropriate boundary conditions to bulk

Higgs fields. Thus, it is also possible to introduce bulk Higgs fields in our scenario. Since

28⊗ 28 = 1⊕ 48⊕ 735 , (3.31)

7⊗ 7 = 1⊕ 48 , (3.32)

7⊗ 7 = 21⊕ 28 , (3.33)

we can introduce bulk Higgses Σ, Σ̃ in the SU(7) adjoint representation 48, ∆1,∆2 in

SU(7) symmetric representations 28,28, and an SU(7) singlet Higgs S to construct SU(7)

gauge invariant Yukawa couplings. We impose the following boundary conditions on the

bulk Higgs fields

Σ, Σ̃(48) = (8,1)−,+0 ⊕ (1,15)+,+0 ⊕ (1,1)−,+0 ⊕ (3, 4̄)−,+7/3 ⊕ (3̄,4)−,+−7/3 , (3.34)

∆1(28) = (6,1)−,+
8/3 ⊕ (1,10)+,+−2 ⊕ (3,4)−,+

1/3 , (3.35)

∆2(28) = (6,1)−,+−8/3 ⊕ (1,10)+,+2 ⊕ (3̄, 4̄)−,+−1/3 , (3.36)

S(1) = (1,1)+,+0 . (3.37)

In the orbifold projection above, we choose the most general boundary conditions [36, 37,

38] to eliminate unwanted zero modes. The results can be obtained from naive orbifolding

by introducing the relevant heavy brane mass terms (on the UV brane) to change the

Neumann boundary conditions to Dirichlet ones. Then the surviving zero modes give the
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Higgs content required in a 4D SUSY SU(3)C×SU(4)W ×U(1)B−L theory2. Bulk Yukawa

couplings can be introduced as

S5D =

∫

d4x

∫

dy
√−g

∫

d2θ
∑

i=1,2,3

(

ỹQX1ij (QX)iΣ(QX)j + ỹLX1ij (LX)iΣ(LX)j

+ỹQX2ij (QX)iS(QX)j + ỹLX2ij (LX)iS(LX)j + ỹLX3ij (LX)i∆1(LX)j

+ỹLX4ij (LX)i∆2(LX)j
)

. (3.38)

Then at low energies, after the heavy KK modes are projected out, the effective 4D Yukawa

couplings are

S4D =

∫

d4x

∫

d2θ
∑

i=1,2,3

(

yQ1ijQ
i
LΣ1(Q

c
L)
j + yL1ijL

i
LΣ1(L

c
L)
j + yQ2ijQ

i
LS(Q

c
L)
j

+ yL2ijL
i
LS(L

c
L)
j + yN

c

ij (LcL)
i∆(LcL)

j + yNij (LL)
i∆(LL)

j
)
. (3.39)

Here we denote the SU(3)× SU(4)W ×U(1)B−L multiplet (3,4)1/3 by QL, the (3̄, 4̄)−1/3

by QcL, the (1,4)−1 by LL, the (1, 4̄)1 by LcL, the (1,15)0 by Σ1, the (1,10)2 by ∆, the

(1,10)−2 by ∆, and the (1,1)0 by S. As indicated in Ref. [6], such Yukawa interactions are

necessary in a 4D theory to give acceptable low energy spectra. The SM fermionic masses

and mixing hierarchy, which is related to the coefficients of the 4D Yukawa couplings,

can be understood from the wave function profile overlaps [32, 44]. The profile of the

bulk Higgs fields can also be determined from their bulk mass terms. In our scenario,

bulk Higgses other than the 35 multiplet are not responsible for proton decay and can

be localized anywhere (such as towards the IR brane to generate enough hierarchy). For

simplicity, we can set the zero modes of bulk Higgs profiles to be flat with the mass terms

cΣ = cΣ̃ = cS = c∆i = cH = 1/2. The low energy Yukawa coupling coefficients that

appeared in previous expressions are of order

yij ∼ 4πỹQX,LXij

√
k

(
∏

i

√

1− 2ci

e−2(ci−
1
2
)kπR − 1

)

e−(cXi+cX̄i+cH− 3
2
)kπR , (3.40)

which can generate the required mass hierarchy and CKM mixing by the Froggatt-Nielson

mechanism [52]. We can, for example, chose

cQX1 = cQX1 =
1

2
+

1

8
, cLX1 = cLX1 =

1

2
+

1

16
, (3.41)

cQX2 = cQX2 =
1

2
+

1

16
, cLX2 = cLX2 =

1

2
+

1

32
, (3.42)

cQX3 = cQX3 =
1

2
, cLX3 = cLX3 =

1

2
. (3.43)

Here we use the fact that e−kπR ≃ (TeV)/k ≃ O(10−16) and ỹQX,LXij

√
k ∼ O(1). Besides,

it is obvious from the charge assignment in the matter sector that there are no unwanted

mass relations in our scenario, such as mµ : me = ms : md, that appear in an SU(5) GUT.

2We can also eliminate the bulk singlet Higgs field S and choose the boundary conditions so that the

SU(3)C × SU(4)W × U(1)B−L singlet comes from (projections of) bulk Higgs hypermultiplets Σ(48). An

additional Σ2(1, 15)0 from Σ̃ is required to break SU(4)W × U(1)B−L to SU(2)L × SU(2)R × U(1)Z ×

U(1)B−L.
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4. Gauge Coupling Unification in SUSY SU(7) Unification

The Lagrangian relevant for the low energy gauge interactions has the following form

S =

∫

d4x

πR∫

0

dy
√−g

[

− 1

4g25
F aMNF aMN − δ(y)

1

4g20
F aµνF

aµν − δ(y − πR)
1

4g2π
F aµνF

aµν

]

,

where g5 is the dimensionful gauge coupling in the 5D bulk, g0 and gπ are the relevant

gauge couplings on the y = 0 and y = πR brane, respectively. The brane kinetic terms are

necessary counter terms for loop corrections of the gauge field propagator. In AdS space

there are several tree-level mass scales which are related as

µ≪MKK ≃ πk

eπkR − 1
≪ 1

R
≪ k ≃M∗ . (4.1)

Thus, the 4D tree-level gauge couplings can be written as [22]

1

g2a
(µ) =

πR

g25
+

1

g20
+

1

g2π
+

1

8π2
∆̃(µ,Q) , (4.2)

where the first three terms contain the tree-level gauge couplings, and ∆̃(µ,Q) represents

the one-loop corrections. The explicit dependence on the subtraction scale cancels that

of the running boundary couplings in such a way that the quantity g2a(µ) is independent

of the renormalization scale. We assume that the bulk and brane gauge groups become

strongly coupled at the 5D Planck scale M5D = Λ with

1

g20
(Λ) ≈ 1

g2π
(Λe−kπR) ≈ 1

16π2
,

πR

g25
(Λ) ≈ O(1) . (4.3)

The GUT breaking effects at the fixed points are very small compared to bulk GUT sym-

metry preserving effects. Thus, we can split the contributions to the gauge couplings into

symmetry preserving and symmetry breaking pieces

1

g2a
(µ) =

πR

g25
(Λ) +

1

g20
(Λ) +

1

g2π
(Λe−kπR) +

1

8π2

[

∆̃(µ,Λ) + ba0 ln
Λ

µ
+ baπ ln

Λe−kπR

µ

]

,

≃ (SU(7) symmetric) +
1

8π2

[

∆̃(µ,Λ) + ba0 ln
Λ

µ
+ baπ ln

Λe−kπR

µ

]

,

≡ (SU(7) symmetric) +
1

8π2
∆(µ,Λ) . (4.4)

The general expression for ∆(µ,Λ) was calculated in [54]. The contributions from the

vector multiplets are





∆U(1)B−L

∆SU(3)C

∆SU(4)W






V

= (SU(7) symmetric) +






0

−9

−12




 ln

(
k

µ

)

, (4.5)

with

T (V++) = ( 0, 3, 4) (4.6)

T (V−+) = ( 7, 4, 3) , (4.7)
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for U(1)B−L, SU(3)C , and SU(4)W , respectively. Here we normalize the U(1)B−L gauge

coupling according to g2B−L = 3g27/14 .

We can use the facts cQXi , cLXi ≥ 1/2 to simplify the matter contributions to

∆M (µ, k) = T (H++)

[

ln

(
k

µ

)

− cH ln

(
k

T

)]

+ cHT (H+−) ln

(
k

T

)

− cHT (H−+) ln

(
k

T

)

+ T (H−−)

[

ln

(
k

µ

)

− (1 + cH) ln

(
k

T

)]

. (4.8)

Thus the contributions from the bulk matter hypermultiplets are






∆U(1)B−L

∆SU(3)C

∆SU(4)W






H

= (SU(7) symmetric) +






12
7

12

12




 ln

(
k

µ

)

, (4.9)

with

T (H++)|mH+Hc =

(
12

7
, 12, 12

)

, (4.10)

T (H−+)|mH+Hc =

(
198

7
, 18, 18

)

. (4.11)

The contributions from the bulk Higgs hypermultiplets include two 48 dimensional

representations, 28 and 28 dimensional representations and possible one singlet.3 The

contributions from the bulk Higgs hypermultiplets are






∆U(1)B−L

∆SU(3)C

∆SU(4)W






M

= (SU(7) symmetric) +






30
7

0

14




 ln

(
k

µ

)

, (4.16)

with

T (H++)|hH+Hc =

(
30

7
, 0, 14

)

, (4.17)

T (H−+)|hH+Hc =

(
131

7
, 23, 9

)

. (4.18)

3We can also add Higgs fields in the 35 and 35 representations with flat profiles and impose the following

boundary conditions

35 = (1,1)−,+
4 ⊕ (1, 4̄)+,+

−3 ⊕ (3̄,4)+,+
5/3 ⊕ (3, 6)−,+

−2/3 , (4.12)

35 = (1,1)−,+
−4 ⊕ (1,4)+,+

3 ⊕ (3, 4̄)+,+
−5/3 ⊕ (3̄, 6̄)−,+

2/3 . (4.13)

Then the beta functions receive additional contributions:

T (H++)|
h
H+Hc =

(

52

7
, 4, 4

)

, (4.14)

T (H−+)|
h
H+Hc =

(

18

7
, 6, 6

)

. (4.15)
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Thus, the total contribution to the RGE running of the three gauge couplings are

1

g2a
= (SU(7) symmetric) +

1

8π2
∆a , (4.19)

with





∆U(1)B−L

∆SU(3)C

∆SU(4)W




 = (SU(7) symmetric) +






6

3

14




 ln

(
k

µ

)

. (4.20)

We summarize the supermultiplets in SUSY SU(7) GUT model that contribute to

running of the three gauge couplings upon MŨ as follows:

• Gauge: V g(48),Σg(48).

• Matter: QXa(28), QXa(28), LX(7), LXa(7̄) (a = 1, 2, 3).

• Higgs: Σ(48), Σ̃(48),∆1(28),∆2(28).

We can also consider the following symmetry breaking chain for the partial unification

SU(4)W × U(1)B−L:

SU(4)W × U(1)B−L → SU(2)L × SU(2)R × U(1)Z × U(1)B−L → SU(2)L × U(1)Y .

Detailed discussions on this symmetry breaking chain can be found in our previous work [6].

Assuming that the left-right scale, which is typically the SU(2)R gauge boson mass

scaleMR, is higher than that of the soft SUSY mass parametersMS , the RG running of the

gauge couplings below the SU(4)W × U(1)B−L partial unification scale MŨ is calculated

as follows.

• For MZ < E < MS , the U(1)Y , SU(2)L, and SU(3)C beta-functions are given by the

two Higgs-doublet extension of the SM

(b1, b2, b3) = ( 7,−3,−7) . (4.21)

• For MS < E < MR, the U(1)Y , SU(2)L, and SU(3)C beta-functions are given by

(b1, b2, b3) = (12, 2,−3) . (4.22)

• For MR < E < MŨ , the
√
2U(1)Z ,

√
14
3 U(1)B−L, SU(2)L = SU(2)R, and SU(3)C

beta functions are given by

(b0, b1, b2, b3) = (22, 6, 16, 3) . (4.23)

In our calculation the mirror fermions are fitted into SU(4)W multiplets and acquire masses

of order MR. The Σ̃(15) Higgs fields decouple at scales below MŨ [6]. We can calculate

the SU(7) unification scale when we know the SU(4)W ×U(1)B−L partial unification scale
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MŨ , which can be determined from the coupling of U(1)Z at MR. Here we simply set MŨ

as a free parameter. At the weak scale our inputs are [39]

MZ = 91.1876 ± 0.0021 , (4.24)

sin2 θW (MZ) = 0.2312 ± 0.0002 , (4.25)

α−1
em(MZ) = 127.906 ± 0.019 , (4.26)

α3(Mz) = 0.1187 ± 0.0020 , (4.27)

which fix the numerical values of the standard U(1)Y and SU(2)L couplings at the weak

scale

α1(MZ) =
αem(MZ)

cos2 θW
= (98.3341)−1 , (4.28)

α2(MZ) =
αem(MZ)

sin2 θW
= (29.5718)−1 . (4.29)

The RGE running of the gauge couplings reads

d αi
d lnE

=
bi
2π
α2
i , (4.30)

where E is the energy scale and bi are the beta functions. Our numerical results (See

fig.1) show that successful unification of the three gauge couplings is only possible for

small MR . 500 GeV and relatively high MŨ . For example, if we choose MS = 200 GeV,

MR = 400 GeV and MŨ = 2.0× 106 GeV, we obtain successful SU(7) unification at

MU = 9.0× 106 GeV , (4.31)

and

1

g2U
≃ 4.65 . (4.32)

Such low energyMR may be disfavored by electro-weak[40] and flavor precision bounds[41].

In general, with additional matter and Higgs contents (for example, additional bulk 7,7

messenger fields), the low MR requirement for gauge coupling unifications can be relaxed.

Besides, symmetry breaking of SU(3)× SU(4)W ×U(1)B−L will lead to non-minimal left-

right model[6]. Thus relatively low MR can be consistent with flavor precision bounds[41].

The choice of MŨ = 2.0×106 generates a hierarchy between the weak scale and the partial

unification scale. Lacking the knowledge of U(1)Z gauge coupling strength upon SUSY left-

right scale, the mild hierarchy between partial unification scale MŨ and SUSY left-right

scale can be the consequences of logarithm running of the various gauge couplings.

It follows from the AdS/CFT correspondence that the SU(7) unification in RS model

are also a successful 4D unification. Our SU(7) model is vector-like and thus anomaly free.

The 5D theory in the bulk is also anomaly free because the theory on the UV (which is a

SU(3) × SU(4)W × U(1)B−L theory [6]) and IR branes is non-anomalous [42].
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Figure 1: One loop relative running of the three gauge coupling in SUSY SU(7) GUT model. Here

SU(4)W gauge coupling (upon M
Ũ
) is identified with SU(2)L gauge coupling. The U(1)B−L gauge

coupling strength at the left-right scale MR is determined by U(1)Y and SU(2)L gauge coupling.

Due to the discontinuity between U(1)B−L and U(1)Y gauge coupling at MR, we do not show the

U(1)Y running below MR in this figure.

5. Supersymmetry Breaking and Semi-direct Gauge Mediation

The orbifold projection reduces the 5D N = 1 supersymmetry, which amounts to 4D N = 2

SUSY, to 4D N = 1 supersymmetry. We need to break the remaining N = 1 supersym-

metry to reproduce the SM matter and gauge content. One interesting possibility is to

use the predictive conformal supersymmetry breaking proposed for vector-like gauge theo-

ries [25, 26]. Conformal supersymmetry breaking in a vector-like theory can be embedded

into a semi-direct gauge mediation model [53] by identifying a subgroup of the flavor group

to be the unifying group of the SM.

5.1 Supersymmetry Breaking in the Conformal Window

The setup of conformal supersymmetry breaking in a vector-like theory involves an N = 1

SU(Nc) gauge theory withNQ < Nc quarksQi, Q̃i (i = 1, · · · , NQ) in fundamental and anti-

fundamental representations, and NQ×NQ gauge singlets Sji . Messenger fields Pa, P̃a (a =

1, · · · , NP ) with mass m are also introduced to promote the model to a superconformal

theory. The total number of flavors satisfies 3NC/2 < NQ+NP < 3Nc. The superpotential
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reads

W = λTr(SQQ̃) +mPP̃ , (5.1)

with Tr(SQQ̃) = SjiQ
iQ̃j.

When the mass parameter m can be neglected, the theory has a infrared fixed point.

When Sji develop vacuum expectation values (VEVs), Qi and Q̃i can be integrated out.

Because NQ < NC , the theory has a runaway vacuum when all quark fields are integrated

out. Such runaway vacuum can be stabilized by quantum corrections to the Kähler po-

tential and leads to dynamical supersymmetry breaking. The conformal gauge mediation

model is especially predictive because m is its only free parameter.

5.2 The AdS/CFT Dual of Seiberg Duality in the Conformal Region and Semi-

Direct Gauge Mediation

The AdS/CFT correspondence [27] indicates that the compactification of Type IIB string

theory on AdS5 × S5 is dual to N = 4 super Yang-Mills theory. The duality implies a

relation between the AdS radius R and g2YMN = gsN : R4 = 4πgsNl
4
s , in string units ls.

The source of an operator in the CFT sides correspond to the boundary value of a bulk

field in gravity side. The generating function of the conformal theory is identified with the

gravitational action in terms of φ0:
〈

exp

(

−
∫

d4xφ0O
)〉

CFT

= exp(−Γ[φ0]) . (5.2)

The AdS/CFT correspondence can be extended to tell us that any 5D gravitational theory

on AdS5 is holographically dual to some strongly coupled, possibly large N , 4D CFT [47,

48]. The metric of an AdS5 slice can be written as

ds2 =
L2

z2
(
gµνdx

µdxν + dz2
)
, (5.3)

which is related to RS metric [21] by

z = Ley/L , (5.4)

with L = 1/k being the AdS radius. According to the AdS/CFT dictionary [34, 49, 51],

the RG scale µ is related to the fifth coordinate by µ = 1/z.

We introduce the bulk gauge symmetry SU(NF )× SU(NP )× SU(NQ)× U(1)R with

SU(NP ) × SU(NQ) × U(1)R being the global symmetry of the 4D theory. The gauge

symmetry SU(NF ) is broken into SU(NC)× SU(NF −NC) at the boundary. The matter

content isNF chiral multiplets in fundamental andNF chiral multiplets in anti-fundamental

SU(NF ) representations. We require the boundary conditions to yield NF chiral multiplets

in both the fundamental and anti-fundamental representations of SU(NC) at the UV brane,

and NF chiral multiplets in both the fundamental and anti-fundamental representations of

SU(NF − NC) at the IR brane. These boundary conditions can be realized by choosing

the projection modes at y = 0 and y = πR as

P1(y = 0) = P2(y = πR) = ( 1, · · · , 1
︸ ︷︷ ︸

Nc

,−1, · · · ,−1
︸ ︷︷ ︸

NF−Nc

) . (5.5)
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Thus, in terms of SU(Nc) × SU(NF −NC) quantum numbers, the field parities and pro-

jections are

Q(NF ) = (NC , 1)++ ⊕ (1, NF −NC)−− , (5.6)

Qc(NF ) = (NC , 1)−− ⊕ (1, NF −NC)++ , (5.7)

P (NF ) = (NC , 1)++ ⊕ (1, NF −NC)−− , (5.8)

P c(NF ) = (NC , 1)−− ⊕ (1, NF −NC)++ , (5.9)

S(1) = (1, 1)++ , Sc(1, 1) = (1, 1)−− . (5.10)

For Q(NF ) and P (NF ) with c ≫ 1/2, the (NC , 1) multiplets (denoted by Q,P ) are fully

localized to the UV brane while the (1, NF −NC) multiplets (denoted by q, p corresponding

to Qc, P c respectively) are strictly localized to the IR brane. The bulk zero modes localized

towards the UV brane correspond to elementary fields. So, in the conformal supersymmetry

breaking setting, we have the fundamental fields Qi, Q̃i, P, P̃ and we can introduce their

interactions on the UV brane

W |UV = λTr(SQQ̃) +mPP̃ . (5.11)

The presence of the additional gauge symmetry SU(NF ) is required by anomaly matching

of SU(NC) and SU(NF − NC) in the Seiberg duality. Anomaly matching in the Seiberg

duality is equivalent to anomaly inflow of the Chern-Simmons terms of the 5D bulk, which

gives opposite contributions on the two boundaries [58].

According to the setup of the conformal supersymmetry breaking scenario, we require

the theory to enter a superconformal region when we can neglect the masses of P and

P̃ . To ensure that the theory is superconformal in a certain energy interval, and to be

predictive, we need to determine the exact gauge beta functions. In the 5D picture, we

can determine the beta-functions by calculating the variation of the gauge couplings with

respect to the fifth dimensional coordinate. The gauge couplings are obtained by calculating

the correlation functions of the conserved currents. Then from the 5D gauge coupling

running [54], we can obtain the dependence on the fifth dimension by replacing kπR with

ln(z/L) = − ln(µL). This way, we obtain the following leading contributions

1

g2a
= − ln(µL)

kg25
+

ln(µL)

8π2

[
3

2
Ta(V++) +

3

2
Ta(V+−)−

3

2
Ta(V−+)−

3

2
Ta(V−−)

]

− ln(µL)

8π2
[(1− cH)Ta(H++) + cHTa(H+−)− cHTa(H−+)

+(1 + cH)Ta(H−−)] . (5.12)

To determine the bulk couplings, we consider the SU(NF ) gauge symmetry on the UV

brane, IR brane and in the bulk. Then, by matching the beta function in the dual descrip-

tion

b =
8π2

kg25
− 3

2
NF = −3NF , (5.13)
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we obtain

8π2

kg25
= −3

2
NF . (5.14)

In our case with a bulk gauge group SU(NF ) and a gauge group SU(Nc) on the UV

and IR branes, for the SU(Nc) gauge couplings we have

T (V++) = Nc , T (V−−) = NF −Nc , Ta(H++) =
1

2
. (5.15)

The leading contributions are4

ba =
8π2

kg25
− 3

2
Nc +

3

2
(NF −Nc) + (1 −CP )NP + (1− CQ)NQ (5.16)

= −3Nc + (1−CP )NP + (1− CQ)NQ . (5.17)

The sub-leading contributions to the gauge couplings depend on ln lnµ and correct the

beta functions with

δba = − 1

ln(µL)
Ta(V++) ≈

g2aNcba
8π2

. (5.18)

This expression is valid at two-loop level which we can see reproducing the NSVZ

formula [56]

dg2

d lnµ
= − g4

8π2
3T (Ad)−∑j T (rj)(1− γj)

1− T (Ad)g2

8π2

, (5.19)

by identifying

γP = CP , γQ = CQ . (5.20)

Via the AdS/CFT correspondence, the bulk mass is related to the conformal dimension of

the operator O that couples to p-forms [46]

(∆ + p)(∆ + p− 4) = m2 . (5.21)

Since the anomalous dimensions γP and γQ are determined by the superconformal invari-

ance of the boundary, we can obtain the bulk mass terms for the P and Q hypermultiplets.

We can obtain the scaling dimension of the 4D superconformal theory via the R-symmetry

charge assignments

∆ =
3

2
Rsc . (5.22)

The U(1)R symmetry of the superconformal theory on the UV brane is determined by the

a-maximization technique [55], with a defined by t‘Hooft anomalies of the superconformal

R-charge

a =
3

32
(3TrR3 − TrR) , (5.23)

4The matter contributions are valid for c++ > 1/2. For c++ ≤ 1/2, 1− cP in front of NP is replaced by

cP .
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and the R-charge being the combination of an arbitrarily chosen R-charge R0 and other

U(1) charges

R = R0 +
∑

i

ciQi . (5.24)

This value is the same as the one obtained in [57]. For example with Nc = 4, NQ = 3, NP =

5, it is [57]

∆s = 1.48 , ∆Q = 0.765 . (5.25)

In the 4D picture the RG fixed points require γ∗S +2γ∗Q = 0 because of the superconformal

nature of the theory.

From the AdS/CFT point of view the spontaneous breaking of the CFT originates from

the IR brane. In the limit cQ ≫ 1/2 (cQ̃ ≪ −1/2) the q and q̃ fields are localized to the

IR brane, which means that they are composites in the strongly interacting CFT. The UV

brane interaction can be promoted to a bulk Yukawa coupling between bulk hypermultiplets

S and Q, Q̃

S =

∫

d4xdy
√−g

∫

d2θλbSQ̃Q , (5.26)

which, after projection, will give the IR brane coupling

S =

∫

d4xdy
√−g

∫

d2θδ(y − πR)λ̃Sq̃q . (5.27)

Thus, we can anticipate interactions of the form λ̃Sq̃q in the IR brane. If q and q̃ are not

strongly localized, they are mixtures of composite and elementary particles. The coupling

of S to q, q̃ will also lead to a coupling between S and CFT operators O at the boundary.

This can also be seen if we completely localize q and q̃. The hypermultiplet S at the UV

boundary is a source of conformal operators. With c = 1/2 for S the mixing of CFT states

(SU(NF −Nc) singlets) and S is marginal.5 According to the AdS/CFT interpretation6,

they correspond to the Seiberg dual superpotential with the coupling of the form

W = λ̃Sq̃q + ωSO . (5.28)

The coefficients λ̃ and ω can be determined by the AdS/CFT correspondence via two-point

correlation functions. We simply match to the standard Seiberg dual result giving

λ̃ =
1

µ
, ω = λ . (5.29)

Here µ can be defined in the context of SQCD, where the beta function coefficients for the

magnetic (b̃) and electric (b) theories and their respective dynamical transmutation scales

Λ̃ and Λ are related as

ΛbΛ̄b̃ = (−1)F−Nµb+b̃ . (5.30)

5The mixing is important for |c| ≤ 1/2 but marginal for c = 1/2.
6From the AdS/CFT dictionary [51] we can see that the operator O is dynamical appearing in the low

energy superpotential.
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In the dual description the fields related to P and P̃ are integrated out after the RGE

running from energies z−1
UV to z−1

IR if the mass parameter satisfies z−1
UV > m > z−1

IR . Thus

we anticipate that p̃ and p does not appear as massless fields on the IR brane. This can

also be understood by observing that adding only the UV mass terms spoils the zero mode

solutions. So the original zero modes p̃ and p, which are localized towards the IR brane,

are no longer massless and will not appear in the dual superpotential. This AdS/CFT

interpretation of the Seiberg duality is valid in the IR region for 3/2NC < NF < 3NC

which are strongly coupled. If the mass parameter is small, m < z−1
IR , then it appears as

a small perturbation on the UV brane. We then can promote the mass parameter m to

a bulk field L, with L(z0) = m, and introduce bulk Yukawa couplings between L and the

P̃ , P hypermultiplets. Similarly to the case of Q̃ and Q, the dual description on the IR

brane has the form7

W ∼ 1

µ
[Sq̃q + Lp̃p] + ω̃〈O1〉L+ λSO , (5.31)

∼ 1

µ
[Sq̃q + Lp̃p] +mL+ λSO , (5.32)

with the coefficients, again, determined by matching to the Seiberg duality. Here we require

the conformal symmetry is spontaneously broken by 〈O1〉 6= 0. After integrating out the

fields S and O such that

S = 0 , O = − 1

µ
q̃q , (5.33)

we can see that the F-term of L

−F †
L = m+

1

µ
p̃p , (5.34)

is non-vanishing (by rank conditions [53]) which indicates that SUSY is broken. It was

pointed out in [53] that SUSY breaking by F-term VEVs of L can cause some problems,

such as a low energy Landau pole and vanishing gaugino masses if we identify the flavor

symmetry with the SM gauge group. Thus it is preferable to study the case with z−1
UV >

m > z−1
IR where we can integrate out the fields related to P and P̃ . Neglecting the additional

contributions from P̃ and P , the 5D action is [59]

L =

∫

d4θ
1

2
(T + T †)e−(T+T †)σ

(

S†e−V S + SceV Sc† + (S ↔ Q, Q̃)
)

+

∫

d2θe−3TσSc
[

∂5 −
1√
2
χ− (

3

2
− c)Tσ′

]

S + h.c. + (S ↔ Q, Q̃)

+ W0δ(y) + e−3TσWπRδ(y − πR) , (5.35)

where T is the radion supermultiplet

T = R+ iB5 + θΨ5
R + θ2FS̃ , (5.36)

7In the presence of P and P̃ there are also terms of the form (Kq̃p +Mp̃q)/µ, which is similar to the

case of S with λ = 0.
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B5 is the fifth component of the graviphoton, Ψ5
R is the fifth component of the right-handed

gravitino, and FS̃ is a complex auxiliary field. After the lowest component of the radion

acquires a VEV, we can re-scale the fields

(S , Sc) → ek|y|√
R
(S , Sc) . (5.37)

Neglecting the gauge sector, for the F-terms of S and Sc we have

−F †
S =

e−k|y|

R

[

−∂5 + (
1

2
+ cS)kǫ(y)

]

Sc +
e−k|y|

R
λbQ̃Q (5.38)

+ δ(y)λQ̃Q+ δ(y − πR)e−2kπR

(
1

µ
q̃q + λO

)

,

−F †
Sc =

e−k|y|

R

[

∂5 − (
1

2
− cS)kǫ(y)

]

S , (5.39)

while for the Q and Q̃ fields

−F †
Q =

e−k|y|

R

[

−∂5 + (
1

2
+ cQ)kǫ(y)

]

Qc +
e−k|y|

R
λbSQ̃ (5.40)

+ δ(y)λSQ̃ + δ(y − πR)e−2kπR 1

µ
Sq̃ ,

−F †
Qc =

e−k|y|

R

[

∂5 − (
1

2
− cQ)kǫ(y)

]

Q . (5.41)

The solutions for S, Q, and Q̃ are

S(y) = CSe
( 1
2
−cS)k|y| , (5.42)

Q(y) = CQe
( 1
2
−cQ)k|y| , (5.43)

Q̃(y) = CQ̃e
( 1
2
−cQ̃)k|y| , (5.44)

with the boundary conditions

CS = S , CQ = Q , Qe(
1
2
−cQ)kπR = q , (5.45)

and cS = 1/2 for S. Substituting the previous expressions into the flatness conditions we

can see that, except for the boundary terms, the solutions for Sc and Qc are

Sc(y) =
λbCQCQ̃
k(cQ + cQ̃)

ǫ(y)e(
1
2
−cS−cQ−cQ̃)k|y| , (5.46)

Qc(y) =
λbCSCQ̃
k(cS + cQ̃)

ǫ(y)e(
1
2
−cS−cQ−cQ̃)k|y| . (5.47)

The boundary conditions determine the SUSY relations

Sc(y = 0) = λQ̃Q , Sc(y = πR) =
1

µ
q̃q + λO (5.48)

Qc(y = 0) = λSQ̃ , Qc(y = πR) =
1

µ
Sq̃ . (5.49)
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Substituting back into the previous solutions, we find that the F †
S and F †

Q flatness conditions

cannot be satisfied at the same time. So supersymmetry is broken in this scenario. This

conclusion agrees with the conjecture of [26] for a vanishing S VEV. The non-vanishing

F-term VEV of S, which has an R-charge 2Nc/NQ − 2 6= 0, breaks the R-symmetry

spontaneously. Thus, gaugino masses are not prohibited. Sfermion masses can be generated

by the operator which arises from integrating out the messengers P and P̃

∆K ∼ −
(
g2SM
16π2

)2 ∫

d4θ
c1
m2

Tr(S†S)(Φ†Φ) , (5.50)

which gives

m2
f̃
∼
(
g2SM
16π2

)2
c1
m2 (F

†
SFS) . (5.51)

Gaugino masses can be generated by an anti-instanton induced operator [26]

c2

∫

d4θ

(
1

16π2

)
(Λ†

L)
2Nc+1

m4Nc+2
Tr(S†S) det(D̄2S†)WaW

a (5.52)

where Λ†
L is the holomorphic dynamical scale below the thresholds of P and P̃ . The gaugino

masses

mgaugino = c2

(
g2SM
16π2

)
(Λ†

L)
2Nc+1

m4Nc+2
(F †

SFS)(F
†
S)
NQ , (5.53)

are not too small because the gauge couplings are large [26].

6. Conclusion

In this paper, we propose the SUSY SU(7) unification of the SU(3)C×SU(4)W ×U(1)B−L

model. Such unification scenario has rich symmetry breaking chains in a five-dimensional

orbifold. We study in detail the SUSY SU(7) symmetry breaking into SU(3)C×SU(4)W ×
U(1)B−L by boundary conditions in a Randall- Sundrum background and its AdS/CFT

interpretation. We find that successful gauge coupling unification can be achieved in

our scenario. Gauge unification favors low left-right and unification scales with tree-level

sin2 θW = 0.15. We use the AdS/CFT dual of the conformal supersymmetry breaking sce-

nario to break the remaining N = 1 supersymmetry. We employ AdS/CFT to reproduce

the NSVZ formula and obtain the structure of the Seiberg duality in the strong coupling

region for 3
2Nc < NF < 3NC . We show that supersymmetry is indeed broken in the

conformal supersymmetry breaking scenario with a vanishing singlet vacuum expectation

value.
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