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Abstract

We propose a supersymmetric extension of the standard model whose Higgs sector induces

a spontaneous supersymmetry breaking by itself. Unlike the minimal extension, the current

Higgs mass bound can be evaded even at the tree-level without the help of the soft breaking

terms due to the usual hidden sector, as is reminiscent of the next to minimal case. We

also have a possibly light pseudo-goldstino in our visible sector in addition to extra Higgs

particles, both of which stem from supersymmetry breaking dynamics. In such a setup of

visible supersymmetry breaking, we may see a part of supersymmetry breaking dynamics

rather directly in future experiments.



1 Introduction

The electroweak (EW) symmetry, an SU(2) × U(1) gauge symmetry, plays a major role

in the standard model of particle physics. In the standard model, the gauge symmetry is

spontaneously broken by the vacuum expectation value of a Higgs scalar field. Although

the quark-lepton and gauge sectors are well established, the structure of the Higgs sector is

largely uncertain because the Higgs particle has not yet been discovered directly. In addition,

there is a naturalness problem about the Higgs scalar mass such that the mass of a scalar

field receives large quantum corrections unlike fermion masses. Supersymmetry (SUSY) can

provide a possible solution to this problem by introducing the corresponding superpartners

into the model with soft SUSY breaking [1]. The minimal supersymmetric extension of the

standard model (MSSM) has two Higgs doublets [2] in order to accommodate the anomaly

cancellation and the holomorphicity of the superpotential.

The soft SUSY breaking serves to make the introduced superpartners heavy enough so

that they have not been observed experimentally. To obtain appropriate soft breaking terms,

the SUSY breaking dynamics is usually put in the so-called hidden sector that is somehow

separated from the visible standard model sector. Namely, the original SUSY breaking in the

hidden sector is mediated to the visible sector by (flavor-blind) interactions such as gravity or

the standard model gauge interactions. In the MSSM, the EW symmetry breaking is tied to

the resultant SUSY breaking in the visible sector. It is possibly generated radiatively through

the SUSY breaking mediated from the hidden sector. If the hidden sector SUSY breaking

occurs dynamically with its breaking scale given by dimensional transmutation, then the

hierarchy between the Planck/GUT scale and the EW scale may be naturally explained.

Unfortunately, this simple scenario is spoiled by the need for the supersymmetric Higgs

mass term called μ-term [3]. The supersymmetric mass scale must be tuned to about the

same size as the EW scale for the correct symmetry breaking.1 Moreover, even if we assume

an appropriate order of magnitude for the supersymmetric scale, in the MSSM, additional

fine-tuning of a few percent is required as follows. The lightest CP-even Higgs mass mh is

smaller than the Z boson mass at the tree-level in the MSSM. Thus the current experimental

bound mh > 114 GeV requires large radiative corrections from the (s)top loops [6] with the

stop mass of at least 1 TeV, which in turn affects radiatively on the soft scalar mass of the up-

type Higgs field through the Yukawa coupling. The soft mass implied by the renormalization

1One approach to this problem is to add a singlet superfield whose scalar component leads to the effective
μ-term, which amounts to the Next to Minimal Supersymmetric Standard Model (NMSSM) [4]. Note that
when we combine the NMSSM with SUSY-breaking mediation such as gauge mediation, it is not so easy to
obtain the correct EW symmetry breaking [5].
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is comparable to the stop mass with a negative sign. Then, fine-tuning is needed up to a few

percent between the μ-term and the soft scalar mass of the Higgs field in order to obtain the

correct Z boson mass. Although many solutions to the above problems have been proposed

so far,2 we do not have any compelling reasons to stick to the minimal (or next to minimal)

Higgs sector like the (N)MSSM and the radiative EW symmetry breaking driven by the soft

SUSY breaking terms.

On the contrary, in this paper, we regard the Higgs sector as a window [10] to unknown

physics beyond the MSSM, in particular, SUSY breaking dynamics. Historically, visible sector

SUSY breaking [11] was abandoned due to phenomenological difficulties such as the prediction

of light superpartners, and in turn, hidden sector SUSY breaking has been adopted. How-

ever, in the presence of the hidden sector, additional visible SUSY breaking is not forbidden

phenomenologically. Namely, we may consider that SUSY breaking is ubiquitous not only in

the hidden sector [12] but also in the visible sector.

By visible SUSY breaking, we mean the existence of SUSY breaking in the standard model

sector even in the absence of the soft breaking terms stemming from the usual hidden sector.

The SUSY breaking scale of the hidden sector tends to be too high to observe its dynamics

directly in the foreseeable future. In contrast, if visible SUSY breaking exists, we may see

a part of SUSY breaking dynamics rather directly in near future experiments.3 Concretely,

as advocated above, we seek visible SUSY breaking in the Higgs sector, which has large

uncertainty at present. The simplest possibility may be a model that has a singlet field S

like the NMSSM with its superpotential coupling to Higgs fields given by SHuHd, where Hu

and Hd are the up-type and down-type Higgs superfields. Then, the vacuum expectation

values of the scalar component and the F -term of a visible SUSY breaking field S lead to

the effective μ-term and Bμ-term, respectively. These vacuum values are possibly generated

spontaneously by some low-scale dynamics different from that of the usual SUSY breaking

hidden sector. Such a low-scale dynamics is hopefully within the reach of direct experiments.

It is interesting that we are able to consider even more direct SUSY breaking dynamics in

the visible sector: the up-type and down-type Higgs fields can participate in the dynamics of

visible SUSY breaking as well as EW symmetry breaking. That is, if we turn off the standard

model gauge interactions and the soft breaking terms, our Higgs sector reduces to just an

O’Raifeartaigh model with global SU(2) × U(1) symmetry breaking. We concentrate on this

possibility below as a concrete example of visible SUSY breaking, since this model seems

2For example, see [7] for relieving the tension between generation of the μ-term and gauge mediation. See
also [8] for solving the little hierarchy problem from the view point of General Gauge Mediation [9].

3Even multiple kinds of extended SUSY breaking might be observable rather directly. The presence of
extra superpartners such as multiple kinds of gravitinos could open up such a possibility [13].
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SU(2)L U(1)Y U(1)R

X0 1 0 2
X1 2 −1/2 2
X2 2 1/2 2
Hu 2 1/2 0
Hd 2 −1/2 0

Table 1: The charge assignments of the Higgs sector fields under the EW symmetry and
U(1)R symmetry.

advantageous from a perspective of direct experimental detection.

The rest of the paper goes as follows. In section 2, we present our model and analyze its

vacuum structure. Then, in section 3, we show the mass spectrum of the Higgs sector in the

visible SUSY and EW symmetry breaking vacuum. It turns out that the lightest CP-even

Higgs mass can evade its current bound even at the tree-level, as is reminiscent of the next to

minimal case. In section 4, we discuss a possible connection between the mass parameters in

our Higgs sector and the mass scales of the hidden sector. Finally, in section 5, we conclude

our discussion and provide possible directions for future works.

2 Visible SUSY & EW breaking

Let us first present our model of visible SUSY breaking to provide the scalar potential.

Then, we identify our vacuum in which both of the visible SUSY and the EW symmetry are

spontaneously broken before analyzing the mass spectrum of the Higgs sector in the vacuum

in the next section.

2.1 The model

As mentioned in the Introduction, we consider an O’Raifeartaigh model as a mechanism of

visible SUSY breaking, in which an F -term of a superfield is non-vanishing. The minimal

extension for this purpose is to introduce a gauge singlet X0 under SU(2)L × U(1)Y , and

a vector-like pair X1, X2 of SU(2)L doublets4 in addition to the usual up-type and down-

type Higgs fields Hu,d of the MSSM.5 For simplicity, we assume that the model has U(1)R

4We can also consider an O’Raifeartaigh model with a vector-like pair of SU(2)L triplets instead of the
doublets, which we regard as the next to minimal extension and only study the minimal case in this paper.

5The doubling of the Higgs doublets might be a manifestation of hidden partial extended SUSY (see also
footnote 3). We note that one of the advantages in the minimal (or next to minimal) Higgs sector like the
(N)MSSM may be the gauge coupling unification. See [15] for discussions on the gauge coupling unification
in the case with four Higgs doublets like the present setup.
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symmetry except for Majorana gaugino masses.6 The charge assignments of the Higgs sector

fields under the EW symmetry and U(1)R symmetry are summarized in Table 1. We assign

R-charge 1 for all the matter superfields,7 so that it forbids renormalizable superpotential

terms such as QLd̄ + LLē + LHu + d̄d̄ū, which violate the lepton or baryon number. Apart

from the usual Yukawa couplings of Higgs fields Hu,d with matters, the symmetries allow our

superpotential to have the following terms:

WHiggs = X0 (f + λHuHd) +m1X1Hu +m2X2Hd, (2.1)

where a coupling f has mass dimension 2, and m1, m2 have mass dimension 1. We can take

all these couplings real without loss of generality. All the mass scales are assumed to be of

order the EW scale.

With the canonical Kähler potential of all the fields, the superpotential and the gauge

interactions determine the scalar potential of the Higgs sector. The entire scalar potential of

the Higgs sector consists of F -terms, D-terms and the soft SUSY breaking terms:

VHiggs = VF + VD + Vsoft. (2.2)

From (2.1), the F -term contribution to the scalar potential is given by

VF =
∣∣f + λH+

u H
−
d − λH0

uH
0
d

∣∣2
+m2

1

(|H0
u|2 + |H+

u |2
)

+m2
2

(|H0
d |2 + |H−

d |2
)

+
∣∣λX0H

0
d −m1X

0
1

∣∣2 +
∣∣λX0H

−
d −m1X

−
1

∣∣2
+
∣∣λX0H

0
u +m2X

0
2

∣∣2 +
∣∣λX0H

+
u +m2X

+
2

∣∣2 ,
(2.3)

where the superscripts of the fields denote the electric charges. On the other hand, from

Table 1, we can derive the following D-term contribution of the Higgs sector:

VD =
1

2
Da

2D
a
2 +

1

2
D1D1, (2.4)

where Da
2 (a = 1, 2, 3) and D1 represent the contributions of the Higgs sector to the D-terms

of SU(2)L and U(1)Y vector superfields, and the summation over a should be understood.

6R-symmetric supersymmetric standard model was studied in [14], whose authors assume that the gauge
sector also respects R-symmetry, so that Majorana gaugino masses are forbidden. In order to give non-zero
masses for the gauginos, they introduce new fields of adjoint representations under the standard model gauge
symmetries, and form the Dirac gaugino mass terms. Here, just for simplicity of the presentation, we assume
that the gauge sector does not respect R-symmetry, and hence Majorana gaugino mass terms are allowed.
It is straightforward to extend our model to include the Dirac mass terms to preserve U(1)R symmetry by
introducing additional fields of the adjoint representations under the standard model gauge group. Then, the
supersymmetric flavor problems may be ameliorated, as pointed out in [14].

7This assignment allows Majorana neutrino mass terms HuLHuL.
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D-terms involving only the Higgs fields are given by

Da
2 = −g2 (H∗

uτ
aHu +H∗

dτ
aHd +X∗

1 τ
aX1 +X∗

2 τ
aX2) ,

D1 = −g1

2

(|H0
u|2 + |H+

u |2 − |H0
d |2 − |H−

d |2 − |X0
1 |2 − |X−

1 |2 + |X0
2 |2 + |X+

2 |2
)
.

(2.5)

where g2 and g1 are the gauge couplings of SU(2)L and U(1)Y , and τa denote SU(2)L gener-

ators. The soft SUSY breaking terms for the Higgs fields are the usual ones mediated from

the hidden sector. The soft terms which respect the symmetries are given as follows:8

Vsoft = m2
Hu

(|H0
u|2 + |H+

u |2) +m2
Hd

(|H0
d |2 + |H−

d |2) +m2
X0
|X0|2

+m2
X1

(|X0
1 |2 + |X−

1 |2) +m2
X2

(|X0
2 |2 + |X+

2 |2)
+ b(H+

u H
−
d −H0

uH
0
d) + c.c.,

(2.6)

where m2
i (i = Hu, Hd, X0, X1, X2) are soft scalar masses of the fields and b is a bilinear

coupling for the Higgs fields.

2.2 Our vacuum

We now specify our vacuum to minimize the above potential. In order to demonstrate the

idea of visible SUSY breaking (in the Higgs sector), we first analyze the limit of turning off the

standard model gauge interactions and the soft breaking terms (2.6). Then, the model (2.1)

just reduces to an O’Raifeartaigh model with global SU(2) × U(1) symmetry spontaneously

broken,9 so that it is enough to deal with the F -term contribution (2.3). We assume that the

vacuum expectation values of all the electrically charged fields are vanishing, which will be

justified retrospectively by the mass spectrum around the vacuum. Then, the scalar potential

is written as

VF =
∣∣f − λH0

uH
0
d

∣∣2 +m2
1|H0

u|2 +m2
2|H0

d |2
+
∣∣λX0H

0
d −m1X

0
1

∣∣2 +
∣∣λX0H

0
u +m2X

0
2

∣∣2 . (2.7)

We emphasize here that the F -terms of all the neutral fields cannot be simultaneously taken

to be zero in the vacuum, and hence SUSY is spontaneously broken in the Higgs sector. Since

the soft SUSY breaking terms have been turned off, SUSY is broken in the visible sector by

itself. This is, what we call, the visible SUSY breaking in the present scenario.

First, let us consider the minimization of the above scalar potential with respect to X0,

∂V

∂X∗
0

= λH0
d
∗ (
λX0H

0
d −m1X

0
1

)
+ λH0

u
∗ (
λX0H

0
u +m2X

0
2

)
= 0. (2.8)

8In particular, the U(1)R symmetry makes A-terms vanishing.
9We temporarily require a coupling relation λf > m1m2 in this limit. In contrast, this kind of

O’Raifeartaigh models as a hidden sector [16] requires λf < m1m2 in order to obtain a SUSY breaking
vacuum without the gauge symmetry breaking.
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We can choose X0 = X0
1 = X0

2 = 0 as a solution to this equation, which also satisfies the

similar minimization conditions about X0
1 and X0

2 . Next, we proceed to the minimization

about the ordinary Higgs fields H0
u, H

0
d . The vacuum conditions are given by

∂V

∂H0
u
∗ = −λH0

d
∗ (
f − λH0

uH
0
d

)
+m2

1H
0
u = 0,

∂V

∂H0
d
∗ = −λH0

u
∗ (
f − λH0

uH
0
d

)
+m2

2H
0
d = 0,

(2.9)

where we have used the solution X0 = X0
1 = X0

2 = 0. Up to symmetry rotation, the

expectation values of the fields H0
u, H

0
d can be taken to be real. Then, the above conditions

can be solved as follows:

H0
u =

1

λ

√
m2

m1
(λf −m1m2), H0

d =
1

λ

√
m1

m2
(λf −m1m2), (2.10)

where the global SU(2) × U(1) symmetry is broken to the remaining U(1) symmetry. When

the global symmetry is gauged as is done in the standard model, this corresponds to the EW

symmetry breaking.

We are now in a position to analyze the full scalar potential (2.2) and specify our vacuum

in which SUSY and the EW symmetry are broken. As described above, we here assume that

the vacuum values of all the electrically charged fields are vanishing. Then, the relevant scalar

potential is given by

V =
∣∣f − λH0

uH
0
d

∣∣2 +
∣∣λX0H

0
d −m1X

0
1

∣∣2 +
∣∣λX0H

0
u +m2X

0
2

∣∣2
+ μ2

1|H0
u|2 + μ2

2|H0
d |2 −

(
bH0

uH
0
d + c.c.

)
+m2

X0
|X0|2 +m2

X1
|X0

1 |2 +m2
X2
|X0

2 |2

+
1

8
g2
(|H0

u|2 − |H0
d |2 − |X0

1 |2 + |X0
2 |2
)2
,

(2.11)

where we have defined mass parameters μ2
1 = m2

1 + m2
Hu

, μ2
2 = m2

2 + m2
Hd

, and a coupling

g2 = g2
1 + g2

2 to simplify the expression. Although the minimization condition about X0

is slightly changed from (2.8) by the soft scalar mass term of X0, we can keep choosing

X0 = X0
1 = X0

2 = 0 as a solution which simultaneously satisfies the minimization conditions

about X0
1 and X0

2 . Next, we consider the minimization conditions about the Higgs fields

H0
u and H0

d . We can again take the expectation values of these fields real without loss of

generality, and express them as H0
u = 1√

2
v sin β and H0

d = 1√
2
v cosβ, as is done in the case of

the MSSM. These vacuum values break the EW gauge symmetry to produce masses for the

W bosons and the Z boson,

m2
W =

1

4
g2

2 v
2, m2

Z =
1

4
g2v2, (2.12)
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where v2 � (246 GeV)2 is required in order to obtain the observed values of the masses. Then,

the minimization conditions ∂V/∂H0
u = ∂V/∂H0

d = 0 result in the following expressions:

μ2
1 +

1

2
λ2v2 cos2 β = (λf + b) cot β +

m2
Z

2
cos 2β,

μ2
2 +

1

2
λ2v2 sin2 β = (λf + b) tan β − m2

Z

2
cos 2β.

(2.13)

Note that these conditions are very similar to the ones in the case of the MSSM. In fact, if

we take the limit λ → 0, the conditions appear the same as the corresponding equations of

the MSSM. In this limit or in the MSSM, the soft SUSY breaking terms are essential for the

correct EW symmetry breaking [17]. On the other hand, in our model, the correct symmetry

breaking is realized even in the absence of the soft breaking terms for nonzero λ, since the

effects of the soft SUSY breaking terms are solely contained in the expressions through the

forms μ2
1 = m2

1 +m2
Hu

, μ2
2 = m2

2 +m2
Hd

and λf + b.

By means of (2.13), we obtain the following expression of the Z boson mass in terms of

the mass parameters μ1 and μ2:

m2
Z = −

(
μ2

2 − μ2
1

cos 2β
+ μ2

2 + μ2
1

)
. (2.14)

As will be shown in the next section, in this model, we can obtain the lightest CP-even Higgs

mass mh so as to evade the current mass bound mh > 114 GeV10 even at the tree-level, as

is reminiscent of the NMSSM. Thus, we do not need large soft scalar masses beyond 1 TeV

to get large radiative corrections. Namely, the mass parameters μ1, μ2 can be near the EW

scale, so that lesser fine-tuning is required to obtain the correct Z boson mass in the above

equation.

3 Mass spectrum

In this section, we show the mass spectrum of the Higgs sector fields in the visible SUSY

and EW symmetry breaking vacuum discussed above. We first analyze the scalar masses. It

turns out that the lightest CP-even Higgs mass can be above the current mass bound even at

the tree-level, as is reminiscent of the NMSSM case. Then, we move to the discussion of the

fermion masses. One of the neutralinos is massless at the tree-level, which would correspond

to the goldstino in the visible SUSY breaking without soft SUSY breaking terms.

10We simply adopt this value for the Higgs boson in the standard model as a point of reference also in our
estimate, though it does not necessarily apply in our case.
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3.1 The scalar masses

The scalar fields of the Higgs sector consist of 18 real field degrees of freedom. When the

EW symmetry is broken, three of them are the would-be Nambu-Goldstone bosons which are

eaten by the Z and the W±. The remaining 15 of them are the physical modes. We now

expand the Higgs fields around their vacuum expectation values as

H0
u → 1√

2
v sin β +H0

u,

H0
d → 1√

2
v cosβ +H0

d ,
(3.1)

where the dynamical parts are further decomposed into CP-even and odd ones as follows:

H0
u =

1√
2

(η1 + iξ1) , H0
d =

1√
2

(η2 + iξ2) . (3.2)

Here, η1,2 are CP-even scalar fields and ξ1,2 are CP-odd ones.

First, we analyze the masses of the CP-odd parts. From (2.2), we can read the mass terms

of the corresponding fields.11 The mass matrix for ξ1 and ξ2 is given by

M2
ξ =

1

2

(
ξ1, ξ2

)( (λf + b) cot β λf + b
λf + b (λf + b) tanβ

)(
ξ1
ξ2

)
, (3.3)

which takes the same form as that of the MSSM except for the λf terms. Diagonalizing this

matrix, the eigenvalues turn out to be

m2
χ0 = 0, m2

A0 = μ2
1 + μ2

2 +
1

2
λ2v2 =

2 (λf + b)

sin 2β
. (3.4)

The massless field is the would-be Nambu-Goldstone mode eaten by the Z boson. The

corresponding mass eigenstates are expressed as

χ0 = ξ1 sin β − ξ2 cosβ, A0 = ξ1 cosβ + ξ2 sin β. (3.5)

Next, we investigate the masses of the CP-even parts η1 and η2 of the neutral Higgs fields.

The analysis of the mass terms proceeds in the same way as above.11 The mass matrix is

given by

M2
η =

1

2

(
η1, η2

)( m2
A0 cos2 β +m2

Z sin2 β
(
λ2v2 −m2

A0 −m2
Z

)
sin β cos β(

λ2v2 −m2
A0 −m2

Z

)
sin β cosβ m2

A0 sin2 β +m2
Z cos2 β

)(
η1

η2

)
.

(3.6)

11Their expressions are summarized in the Appendix.
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Figure 1: The mass of the lighter Higgs, mh, in our model (red (solid) curves). The horizontal
axis is the mass of A0. The left panel is plotted with tanβ = 3, while the right panel is done
with tan β = 10. The horizontal (dotted) line denotes the current Higgs mass bound. The
green (dashed) curve represents the case of the MSSM.

Then, the eigenvalues of this mass matrix are given by

m2
h,H =

1

2

(
m2

A0 +m2
Z ∓

√(
m2

A0 −m2
Z

)2
+ 4

(
m2

A0 − 1

2
λ2v2

)(
m2

Z − 1

2
λ2v2

)
sin2 2β

)
,

(3.7)

which also take the same forms as those in the MSSM except for the terms dependent on λ.

Note that this slight difference is, nonetheless, crucial for the lighter CP-even Higgs mass to

evade the current experimental bound, as is the case for the NMSSM. In fact, in the limit of

large mA0 , the lighter Higgs mass can be written as

m2
h � m2

Z cos2 2β +
1

2
λ2v2 sin2 2β, (3.8)

which is lifted up by the second term in the right-hand side for large λ and small tanβ.

Let us now analyze the masses of the charged Higgs fields. The analysis of the mass terms

again proceeds in the same way.11 The mass matrix for the charged Higgs fields is given by

M2
H± =

(
μ2

1 + μ2
2 +M2

W

) (
H+

u
∗
, H−

d

)( cos2 β sin β cosβ
sin β cosβ sin2 β

)(
H+

u

H−
d
∗

)
. (3.9)

Then, the eigenvalues of this mass matrix are obtained as

m2
χ± = 0, m2

H± = μ2
1 + μ2

2 +M2
W = m2

A0 +M2
W − 1

2
λ2v2, (3.10)

where χ− = χ+∗
and H− = H+∗

. The massless modes χ± are would-be Nambu-Goldstone

modes eaten by the W boson. We also note that the mass relation between the A0 mass and
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Figure 2: The lighter Higgs mass mh (red (solid) curves), the heavier Higgs mass mH (green
(dashed) curves), and the charged Higgs mass mH± (blue (dotted) curves). The horizontal
axis is the mass of A0. The left panel is plotted with tanβ = 3, while the right panel is done
with tanβ = 10.

the masses of the H± coincides with that of the MSSM except for the term dependent on the

coupling λ. The mass eigenstates are given by

χ+ = H+
u sin β −H−

d
∗
cosβ, H+ = H+

u cosβ +H−
d
∗
sin β. (3.11)

Figure 1 shows the mass of the lighter CP-even Higgs, mh, by varying the A0 (red (solid)

curves) for λ = 1 in the cases with tanβ = 3 (the left panel) and with tanβ = 10 (the right

panel). The horizontal (dotted) lines represent the current experimental bound on the Higgs

mass, mh > 114 GeV. For comparison, the mass of the lighter Higgs in the MSSM is shown

(green (dashed) curves), in which λ is taken to be zero. In the left panel, we see that the

lighter CP-even Higgs mass can reach above the current experimental bound for mA0 > 220

GeV in our model with tan β = 3 unlike the MSSM case. We also see in the right panel

that the Higgs mass in our model approaches that of the MSSM as tanβ is increased. This

behavior can be understood by means of (3.8).

In figure 2, we show the behavior of the masses of the lighter Higgs, mh (red (solid) curves),

the heavier Higgs, mH (green (dashed) curves), and the charged Higgs, mH± (blue (dotted)

curves), in terms of mA0 for λ = 1. Here, tanβ is fixed to 3 (the left panel) and 10 (the right

panel), respectively. Both the panels imply that the masses of the charged Higgs are tachyonic

for mA0 smaller than 150 GeV. This is due to the term dependent on λ in (3.10). Similarly,

one sees that the mass of the lighter Higgs becomes tachyonic for tanβ = 3 (the left panel)

when mA0 is smaller than 130 GeV, while it does not for tanβ = 10 (the right panel). This is

because the terms dependent on λ in (3.7) are proportional to sin 2β, which become smaller
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Figure 3: The lighter CP-even Higgs mass mh. The horizontal axis is the mass of A0 and the
vertical axis is the coupling λ. The left panel is plotted with tanβ = 3, while the right panel
is done with tanβ = 10.
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Figure 4: The heavier Higgs mass mH . The left panel is plotted with tanβ = 3, while the
right panel is done with tanβ = 10.
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Figure 5: The charged Higgs masses mH± . The left panel is plotted with tanβ = 3, while the
right panel is done with tanβ = 10.
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as tan β becomes larger. Their negative contribution to the lighter Higgs mass is small for

larger tanβ, and hence the mass is positive for mA0 < 130 GeV with tanβ = 10.

To see the dependence of the masses on the coupling λ, we show the contour plots of the

masses, mh (figure 3), mH (figure 4), and mH± (figure 5). In each figure, tanβ = 3 for the

left panel, tanβ = 10 for the right panel, and values of the masses are indicated by a color

bar aside. In figure 3, we see that the lighter Higgs mass becomes tachyonic (white region)

for large λ and small mA0 . This is because the second term in the right-hand side of (3.7)

becomes larger than the first term as λ is large. The region of tachyonic mass for tan β = 10 is

smaller than that for tanβ = 3, since the λ dependent terms are suppressed by sin2 2β. In the

left panel of figure 3, it is seen that the lighter Higgs mass exceeds the current experimental

bound in a large region of λ > 0.6. In figure 4, we can see that the heavier Higgs mass is less

sensitive to λ and mainly determined by mA0 . The terms dependent on λ are significant only

in a region of small mA0 and large λ. However, such a region is excluded by the lighter Higgs

mass to be smaller than the experimental bound (or even tachyonic). In figure 5, similarly

to the lighter Higgs mass, one sees that the charged Higgs mass becomes tachyonic for large

λ (white region). To avoid the tachyonic mass, one can obtain an upper bound on λ from

(3.10) as

λ < g

√
m2

A0 +m2
W

2m2
Z

. (3.12)

This bound is independent of tanβ and therefore gives a stronger constraint on λ than that

by the lighter Higgs mass.12

We now express the mass eigenstates of the neutral CP-even Higgs fields in terms of the

mixing angle α in the same way as is often done in the analysis of the MSSM as follows:

h = η1 cosα− η2 sinα, H = η1 sinα + η2 cosα. (3.13)

Here, h corresponds to the lighter mass eigenstate, while H corresponds to the heavier one.

The mixing angle α is given by

sin 2α

sin 2β
= −m

2
A0 +m2

Z − λ2v2

m2
H −m2

h

,
cos 2α

cos 2β
= −m

2
A0 −m2

Z

m2
H −m2

h

, (3.14)

where the first relation takes the same form as that of the MSSM except for the λ2v2 term,

and the second one exactly coincides with that of the MSSM. In order to identify which

Higgs boson is the standard-model-like one, we need to know which Higgs boson is more

12This bound is conservative because we only require that mH± is positive. When we take into account the
current experimental bound on mH± , a more stringent constraint is obtained.
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Figure 6: The neutral CP-even Higgs boson couplings with the standard model gauge fields.
The left graph is plotted with tan β = 3, while the right graph is done with tanβ = 10.

strongly coupled with the standard model gauge bosons and the matter fields. Higgs–gauge

boson–gauge boson couplings are expressed as follows:

Lhgg = −g2mW sin(α− β)hW †
μW

μ − 1

2
gmZ sin(α− β)hZμZ

μ

+ g2mW cos(α− β)HW †
μW

μ +
1

2
gmZ cos(α− β)HZμZ

μ.
(3.15)

Figure 6 shows the strength of these couplings for λ = 1 by varying the mass of the A0 in the

case with tanβ = 3 (the left panel) and tan β = 10 (the right panel). The red (solid) curve

represents the coupling of the lighter Higgs h with the gauge fields (by sin(α− β)), while the

blue (dotted) curve represents that of the heavier HiggsH (by cos(α−β)). For comparison, we

also show the same couplings in the case of the MSSM. The green (dashed) curve represents

the coupling of the lighter Higgs in the MSSM, while the pink (dashed-dotted) curve denotes

that of the heavier Higgs field. From the figure, we see that the coupling of the lighter Higgs

in our model is smaller than that of the MSSM for small mA0 , and can be in anti-decoupling

region for mA0 < 180 GeV in the tanβ = 3 case. We also see that the lighter CP-even Higgs

field h is more strongly coupled with the standard model gauge fields than the heavier one H

in the region of large A0 mass, which is the same as in the MSSM.

Finally, we analyze the masses of the X scalar fields. Their mass terms derived from (2.2)

are also summarized in the Appendix. The masses of the charged fields are given by

m2
X−

1
= m2

1 +m2
X1

− 1

2
m2

Z cos 2θW cos 2β,

m2
X+

2
= m2

2 +m2
X2

+
1

2
m2

Z cos 2θW cos 2β,
(3.16)

where θW denotes the Weinberg angle, sin2 θW � 0.23. In order to analyze the masses of the
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neutral fields, we define

X0 =
1√
2
(σ0 + iρ0),

X0
1 =

1√
2
(σ1 + iρ1),

X0
2 =

1√
2
(σ2 + iρ2).

(3.17)

Then, the mass matrix of the real parts σ is expressed as

M2
σ =

1

2

(
σ0 σ1 σ2

)
⎛
⎜⎝

1
2
λ2v2 +m2

X0
− λ√

2
m1vcβ

λ√
2
m2vsβ

− λ√
2
m1vcβ m2

1 +m2
X1

+ 1
2
m2

Zc2β 0
λ√
2
m2vsβ 0 m2

2 +m2
X2

− 1
2
m2

Zc2β

⎞
⎟⎠
⎛
⎝ σ0

σ1

σ2

⎞
⎠ ,

(3.18)

where sβ, cβ and c2β denote sin β, cosβ and cos 2β, respectively. As for the imaginary parts ρ,

their mass matrix takes the same form as the real part mass matrix (3.18). We present sample

spectra of the X scalar masses in table 2, where the following four cases with tanβ = 3 (the

left panel) and tanβ = 10 (the right panel) for λ = 1 are shown:

(i)

⎧⎪⎨
⎪⎩
m1 = m2 = 300 GeV

M1 = M2 = 300 GeV

mX0 = mX1 = mX2 = 300 GeV,

(ii)

⎧⎪⎨
⎪⎩
m1 = m2 = 500 GeV

M1 = M2 = 300 GeV

mX0 = mX1 = mX2 = 300 GeV,

(iii)

⎧⎪⎨
⎪⎩
m1 = m2 = 300 GeV

M1 = M2 = 500 GeV

mX0 = mX1 = mX2 = 500 GeV,

(iv)

⎧⎪⎨
⎪⎩
m1 = m2 = 300 GeV

M1 = M2 = 300 GeV

mX0 = 0, mX1 = mX2 = 300 GeV.

(3.19)

Here, M1 and M2 are the soft SUSY breaking masses of the Bino and the Winos discussed in

the next subsection (see (3.20)). In the table, mσ1, mσ2, mσ3 denote (the square roots of) the

three eigenvalues of the mass matrix (3.18), while mρ1, mρ2, mρ3 are those of the imaginary

parts ρ.
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(i) (ii) (iii) (iv)
mC̃1

[GeV] 248 289 288 248
mC̃2

[GeV] 302 501 302 302
mC̃3

[GeV] 361 518 519 361
mÑ1

[GeV] 0 0 0 0
mÑ2

[GeV] 239 286 282 239
mÑ3

[GeV] 300 300 305 300
mÑ4

[GeV] 307 505 347 307
mÑ5

[GeV] 347 519 347 347
mÑ6

[GeV] 347 529 500 347
mÑ7

[GeV] 368 529 524 368
mX−

1
[GeV] 426 585 585 426

mX+
2

[GeV] 422 582 582 422

mσ1, mρ1 [GeV] 301 300 500 119
mσ2, mρ2 [GeV] 421 581 581 421
mσ3, mρ3 [GeV] 461 611 610 446

(i) (ii) (iii) (iv)
mC̃1

[GeV] 249 289 289 249
mC̃2

[GeV] 300 500 300 300
mC̃3

[GeV] 362 519 519 362
mÑ1

[GeV] 0 0 0 0
mÑ2

[GeV] 239 286 282 239
mÑ3

[GeV] 300 300 305 300
mÑ4

[GeV] 307 505 347 307
mÑ5

[GeV] 347 519 347 347
mÑ6

[GeV] 347 529 500 347
mÑ7

[GeV] 368 529 524 368
mX−

1
[GeV] 427 585 585 427

mX+
2

[GeV] 422 581 581 422

mσ1, mρ1 [GeV] 302 301 501 119
mσ2, mρ2 [GeV] 420 580 580 420
mσ3, mρ3 [GeV] 461 611 611 447

Table 2: The chargino masses, the neutralino masses, and the scalar masses of the X fields
in the four cases (i), (ii), (iii), (iv) explained in the main text. The left panel is plotted with
tan β = 3, while the right panel is done with tanβ = 10.

3.2 The fermion masses

Let us analyze the fermion masses of the Higgs sector. We assume that the gauginos have

the following Majorana mass terms, which break U(1)R symmetry softly (presumably due to

hidden sector dynamics):

Lgaugino = −1

2
M2

(
W̃+W̃− + W̃−W̃+

)
− 1

2
M2

(
W̃ 3W̃ 3 + c.c.

)
− 1

2
M1

(
B̃B̃ + c.c.

)
,

(3.20)

where we have omitted the Gluino mass terms with no need for the present purposes. Certain

modes in the Higgs sector have the mass mixings with the Winos and the Bino. These mixings

come from the Yukawa-type coupling of a gaugino, a fermion, and its scalar superpartner which

has a nonzero vacuum expectation value. The mixing terms of the Winos and the Higgsinos

are given by

LSU(2) = −
√

2mW sin βH̃+
u W̃

− −
√

2mW cosβH̃−
d W̃

+

+mZ sin β cos θW H̃
0
uW̃

3 −mZ cosβ cos θW H̃
0
dW̃

3 + c.c.,
(3.21)
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while the mixing terms of the Bino and the Higgsinos are given by

LU(1) = −mZ sin β sin θW H̃
0
uB̃ +mZ cosβ sin θW H̃

0
dB̃ + c.c. (3.22)

With the aid of these mass terms and the superpotential (2.1) of the model, we can derive

the chargino mass terms, which are expressed as

Lchargino = −1

2
ψTMC̃ψ + c.c., (3.23)

where ψ = (W̃+, H̃+
u , X̃

+
2 , W̃

−, H̃−
d , X̃

−
1 ) and the mass matrix MC̃ is given by

MC̃ =

(
0 MT

M 0

)
, M =

⎛
⎝ M2

√
2mW sin β 0√

2mW cosβ 0 m2

0 m1 0

⎞
⎠ . (3.24)

The mass matrix M can be diagonalized as

L∗MR† =

⎛
⎝ mC̃1

0 0
0 mC̃2

0
0 0 mC̃3

⎞
⎠ , (3.25)

with the corresponding mass eigenstates given by⎛
⎝ C̃+

1

C̃+
2

C̃+
3

⎞
⎠ = R

⎛
⎝ W̃+

H̃+
u

X̃+
2

⎞
⎠ ,

⎛
⎝ C̃−

1

C̃−
2

C̃−
3

⎞
⎠ = L

⎛
⎝ W̃−

H̃−
d

X̃−
1

⎞
⎠ , (3.26)

where L and R are unitary matrices. We present sample mass spectra of the charginos in

table 2, where we show four cases (i), (ii), (iii), (iv) given above with tanβ = 3 (the left panel)

and tan β = 10 (the right panel).

Finally, we analyze the masses of the neutralinos ψ0 = (B̃, W̃ 3, H̃0
d , H̃

0
u, X̃

0
1 , X̃

0
2 , X̃0). The

neutralino mass terms are expressed as

Lneutralino = −1

2
(ψ0)TMÑψ

0 + c.c., (3.27)

where the mass matrix MÑ is given by

MÑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 −mZcβsW mZsβsW 0 0 0
0 M2 mZcβcW −mZsβcW 0 0 0

−mZcβsW mZcβcW 0 0 0 −m2 − λ√
2
vsβ

mZsβsW −mZsβcW 0 0 −m1 0 − λ√
2
vcβ

0 0 0 −m1 0 0 0
0 0 −m2 0 0 0 0
0 0 − λ√

2
vsβ − λ√

2
vcβ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.28)
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with sW = sin θW and cW = cos θW . We also present sample mass spectra of the neutralinos in

table 2, where we show four cases (i), (ii), (iii), (iv) given above with tanβ = 3 (the left panel)

and tan β = 10 (the right panel) for λ = 1. The table implies that the lightest neutralino Ñ1

is massless at the tree-level. This originates from the fact that the determinant of the mass

matrix (3.28) is vanishing:

detMÑ = 0. (3.29)

The massless mode would correspond to the goldstino mode in the visible SUSY breaking

without soft SUSY breaking terms. In the full setup with hidden sector SUSY breaking

in supergravity, it turns out to be a massive pseudo-goldstino. If the hidden sector was

sequestered from our visible sector,13 the pseudo-goldstino mass would be twice the gravitino

mass in accord with [19], whereas it may be orders of magnitude different from the gravitino

mass in general due to higher order effects beyond the simple tree-level analysis. Anyhow,

the visible sector pseudo-goldstino might be seen as a remarkable feature in the visible SUSY

breaking scenario.14 Of course, we have more to investigate on higher order effects. For

instance, the visible SUSY breaking in the Higgs sector also affects soft SUSY breaking

pattern due to gauge mediation effects with the Higgses as messengers [21]. These and other

features depend crucially on the hidden sector SUSY breaking and its mediation to the visible

sector, in particular, its connection with Higgs interactions thereof.

4 A connection with hidden sector SUSY breaking

As an illustrative example of connecting the visible SUSY breaking in the Higgs sector to

the higher-scale SUSY breaking in the hidden sector, we here present Giudice-Masiero-like

effective operators [22] in our setup. This also serves as a sample case that the visible SUSY

breaking is a cascade phenomenon induced by the hidden sector SUSY breaking. Let us

consider both F -type and D-type SUSY breaking spurions representing the hidden sector

effects:

S = θ2F, Wα = θαD, (4.1)

whose R-charges are 2 and 1, respectively.

Then the superpotential (2.1) comes from

∫
d4θ

[
a1

S†

M
X1Hu + a2

S†

M
X2Hd + a0

W α̇W
α̇

M2
X0 + c.c.

]
, (4.2)

13In this case, sleptons have tachyonic masses due to the anomaly mediation [18].
14Such a low-scale pseudo-goldstino, as well as gravitinos (see also footnote 3), might constitute extra

radiation [20] in the early universe.
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where M is the mediation scale of the hidden sector SUSY breaking to the Higgs sector with

a0, a1, a2 as coupling constants.15 These terms result in the parameters

m1 = a1
F †

M
, m2 = a2

F †

M
, f = a0

D2

M2
. (4.3)

We can also obtain the soft SUSY breaking terms with the aid of terms like∫
d4θ

[(
S†S
M2

HuHd + c.c.

)

+
S†S
M2

(
H†

uHu +H†
dHd +X†

0X0 +X†
1X1 +X†

2X2

)]
,

(4.4)

where the first term gives the Bμ-term and the rest gives soft scalar masses of the Higgs

sector in our model.

5 Conclusion

We have presented a supersymmetric extension of the standard model whose Higgs sector has

spontaneous SUSY breaking even in the absence of the soft breaking terms from the usual

hidden sector. This extension is along the lines of general perspectives such that the Higgs

sector may be a window to some unknown physics and SUSY breaking may be ubiquitous even

in the visible sector. The current experimental bound for the lighter CP-even Higgs mass can

be evaded even at the tree-level, which is reminiscent of the NMSSM. The pseudo-goldstino

lies in the visible sector since the corresponding SUSY breaking is visible in the Higgs sector.

Since the scale of the visible SUSY breaking can be near the EW scale, it might be possible

to observe the breaking dynamics rather directly in future experiments. It may be interesting

to analyze new decay channels of the Higgs fields in such a model. We have regarded the

current experimental bound mh > 114 GeV for the lighter CP-even Higgs field as a point of

reference in our consideration. However, this bound might be totally inadequate for our model

since, among others, decays of Higgs particles beyond the standard model have not been taken

into account. In this connection, the production and detection of the pseudo-goldstino mode

in the Higgs sector is another interesting experimental challenge.

We have restricted ourselves to the vacuum in our model that has a desired breaking

pattern of the visible SUSY and the EW symmetry in this paper. In the MSSM and its

cousins, thorough analyses of the potentially dangerous directions in their field spaces have

15We have not included a term like S†X0 without M suppression. If the S has a non-vanishing scalar
component, we may do without the D-type SUSY breaking spurion by replacing the Wα-dependent term with
a term like S†2SX0/M

2.
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been carried out [23]. Our extension might have charge and/or color breaking minima in the

landscape of vacua, which is to be further examined.

We have not specified the details of the hidden sector SUSY breaking in the present

analyses mainly at the tree-level, though it is intriguing to study connections between the

visible SUSY breaking in the Higgs sector and the hidden sector SUSY breaking in a variety

of mediation mechanisms. Since the Higgs sector is largely unknown experimentally, and

even theoretically, we often encounter puzzles such as μ and Bμ problems in the MSSM with

hidden sector SUSY breaking, various possibilities concerning the Higgs sector and its possible

extensions may deserve open-minded investigations.
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Appendix

Here, we summarize the mass terms of the Higgs sector fields derived from the scalar potential

(2.2). We can read the mass matrices presented in the main text from these mass terms.

The charged Higgs mass terms

The mass terms from the F -term contribution to the scalar potential VF are given by

m2
1|H+

u |2 +m2
2|H−

d |2 + λ

(
f − 1

2
λv2 sin β cosβ

)(
H+

u H
−
d + c.c.

)
,

where we have used the vacuum expectation values of the Higgs fields H0
u = 1√

2
v sin β, H0

d =
1√
2
v cosβ, and the redefinitions of the scalar fields (3.1). The D-term contribution to the

charged Higgs mass terms is given by

− 1

8
g2v2 cos 2β

(|H+
u |2 − |H−

d |2
)

+
1

4
g2

2v
2 cos2 β|H+

u |2 +
1

4
g2

2v
2 sin2 β|H−

d |2

+
1

4
g2

2v
2 sin β cosβ

(
H+

u H
−
d + c.c.

)
.

20



The contribution from the soft SUSY breaking terms is given by

m2
Hu

|H+
u |2 +m2

Hd
|H−

d |2 + b
(
H+

u H
−
d + c.c.

)
.

The neutral Higgs mass terms

The mass terms from the F -term contribution to the scalar potential VF are given by(
m2

1 +
1

2
λ2v2 cos2 β

)
|H0

u|2 +

(
m2

2 +
1

2
λ2v2 sin2 β

)
|H0

d |2

+
1

2
λ2v2 sin β cos β

(
H0

uH
0
d
∗
+ c.c.

)
− λ

(
f − 1

2
λv2 sin β cosβ

)(
H0

uH
0
d + c.c.

)
.

The contribution from the D-term VD is given by

1

8
g2

[
v2
(
sin2 β − cos2 β

) (|H0
u|2 − |H0

d |2
)

+
1

2

(
sin β

(
H0

u +H0
u
∗)− cosβ

(
H0

u +H0
u
∗))2]

.

The soft SUSY breaking contribution is given by

m2
Hu

|H0
u|2 +m2

Hd
|H0

d |2 − b
(
H0

uH
0
d + c.c.

)
.

The scalar mass terms of the X fields

The mass terms of the X scalar fields are given by

(
1

2
λ2v2 +m2

X0

)
|X0|2

+

(
m2

1 +m2
X1

+
1

2
m2

Z cos 2β

)
|X0

1 |2 +

(
m2

2 +m2
X2

− 1

2
m2

Z cos 2β

)
|X0

2 |2

+

(
m2

1 +m2
X1

− 1

2
m2

Z cos 2θW cos 2β

)
|X−

1 |2

+

(
m2

2 +m2
X2

+
1

2
m2

Z cos 2θW cos 2β

)
|X+

2 |2

− λ√
2
m1v cosβ

(
X∗

0X
0
1 +X0X

0
1
∗)

+
λ√
2
m2v sin β

(
X∗

0X
0
2 +X0X

0
2
∗)
.
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