55 research outputs found

    Pituitary hypoplasia and growth hormone deficiency in a woman with glycogen storage disease type Ia: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Growth retardation is one of the cardinal manifestations of glycogen storage disease type Ia. It is unclear which component of the growth hormone and/or insulin-like growth factor axis is primarily disrupted, and management of growth impairment in these patients remains controversial. Here we report the first case in the literature where glycogen storage disease type Ia is associated with pituitary hypoplasia and growth hormone deficiency.</p> <p>Case presentation</p> <p>A 20-year-old woman with glycogen storage disease type Ia was admitted to our endocrinology department because of growth retardation. Basal and overnight growth hormone sampling at 2-hour intervals demonstrated low levels; however, provocative testing revealed a relatively normal growth hormone response. A hypoplastic anterior pituitary with preserved growth hormone response to provocative testing suggested the possibility of growth hormone neurosecretory dysfunction and/or primary pituitary involvement.</p> <p>Conclusion</p> <p>Pituitary hypoplasia may result from growth hormone-releasing hormone deficiency, a condition generally known as growth hormone neurosecretory dysfunction. It is an abnormality with a spontaneous and pulsatile secretion pattern, characterized by short stature, growth retardation and normal serum growth hormone response to provocative testing. However, in the case described in this report, a normal although relatively low growth hormone response during insulin tolerance testing and pituitary hypoplasia suggested that primary pituitary involvement or growth hormone neurosecretory dysfunction may occur in glycogen storage disease type Ia. This is a potential cause of growth failure associated with a lower somatotroph mass, and may explain the variable responsiveness to growth hormone replacement therapy in people with glycogen storage disease.</p

    Pituitary insufficiency after operation of supratentorial intra- and extraaxial tumors outside of the sellar–parasellar region?

    Get PDF
    Recent studies investigating pituitary function after non-sellar brain tumor surgery showed that up to 38.2% of patients have pituitary insufficiency (PI). It has been assumed that the operation causes the PI, but preoperative hormone testing, which would have been necessary to prove this assumption, was not performed. The objective of this study is to answer the question if indeed microsurgery is the culprit of PI in patients with operatively treated non-sellar brain tumors. In this prospective trial, 54 patients with supratentorial non-sellar tumors were included. The basal levels of cortisol, prolactin, testosterone, estrogen, IGF-1, fT3, fT4, STH, TSH, ACTH, FSH, and LH were recorded preoperatively on days 1 and 7 after surgery. If basal hormone screening revealed an abnormality, a releasing hormone assay was performed. Before surgery, 24 of the 54 patients (44.4%) already had PI. Additional 25 patients showed either hypocortisolism or hypothyreoidism. As those patients had been pre-treated with dexamethasone and l-thyroxine, these findings were considered not to represent PI but drug effects. Hormone testing on days 1 and 7 after surgery revealed no changes. With 44.4% PI is a frequent finding in brain tumor patients already before surgery. The factors causing preoperative PI remain yet to be identified. The endocrine results after surgery are unchanged which rules out that surgery is the cause of PI

    Copeptin reflects physiological strain during thermal stress.

    Get PDF
    PURPOSE: To prevent heat-related illnesses, guidelines recommend limiting core body temperature (T c) ≤ 38 °C during thermal stress. Copeptin, a surrogate for arginine vasopressin secretion, could provide useful information about fluid balance, thermal strain and health risks. It was hypothesised that plasma copeptin would rise with dehydration from occupational heat stress, concurrent with sympathoadrenal activation and reduced glomerular filtration, and that these changes would reflect T c responses. METHODS: Volunteers (n = 15) were recruited from a British Army unit deployed to East Africa. During a simulated combat assault (3.5 h, final ambient temperature 27 °C), T c was recorded by radiotelemetry to differentiate volunteers with maximum T c > 38 °C versus ≤ 38 °C. Blood was sampled beforehand and afterwards, for measurement of copeptin, cortisol, free normetanephrine, osmolality and creatinine. RESULTS: There was a significant (P  38 °C (n = 8) vs ≤ 38 °C (n = 7) there were significantly greater elevations in copeptin (10.4 vs. 2.4 pmol L(-1)) and creatinine (10 vs. 2 μmol L(-1)), but no differences in cortisol, free normetanephrine or osmolality. CONCLUSIONS: Changes in copeptin reflected T c response more closely than sympathoadrenal markers or osmolality. Dynamic relationships with tonicity and kidney function may help to explain this finding. As a surrogate for integrated physiological strain during work in a field environment, copeptin assay could inform future measures to prevent heat-related illnesses
    • …
    corecore