2,213 research outputs found

    Optimal dynamic reinsurance with dependent risks: variance premium principle

    Get PDF
    In this paper, we consider the optimal proportional reinsurance strategy in a risk model with two dependent classes of insurance business, where the two claim number processes are correlated through a common shock component. Under the criterion of maximizing the expected exponential utility with the variance premium principle, we adopt a nonstandard approach to examining the existence and uniqueness of the optimal reinsurance strategy. Using the technique of stochastic control theory, closed-form expressions for the optimal strategy and the value function are derived for the compound Poisson risk model as well as for the Brownian motion risk model. From the numerical examples, we see that the optimal results for the compound Poisson risk model are very different from those for the diffusion model. The former depends not only on the safety loading, time, and the interest rate, but also on the claim size distributions and the claim number processes, while the latter depends only on the safety loading, time, and the interest rate.postprin

    Optimal proportional reinsurance with common shock dependence

    Get PDF
    In this paper, we consider the optimal proportional reinsurance strategy in a risk model with multiple dependent classes of insurance business, which extends the work of Liang and Yuen (2014) to the case with the reinsurance premium calculated under the expected value principle and to the model with two or more classes of dependent risks. Under the criterion of maximizing the expected exponential utility, closed-form expressions for the optimal strategies and value function are derived not only for the compound Poisson risk model but also for the diffusion approximation risk model. In particular, we find that the optimal reinsurance strategies under the expected value premium principle are very different from those under the variance premium principle in the diffusion risk model. The former depends not only on the safety loading, time and interest rate, but also on the claim size distributions and the counting processes, while the latter depends only on the safety loading, time and interest rate. Finally, numerical examples are presented to show the impact of model parameters on the optimal strategiespostprin

    3D simulation of morphological effect on reflectance of Si3N4 sub-wavelength structures for silicon solar cells

    Get PDF
    In this study, we investigate the reflectance property of the cylinder, right circular cone, and square pyramid shapes of silicon nitride (Si3N4) subwavelength structure (SWS) with respect to different designing parameters. In terms of three critical factors, the reflectance for physical characteristics of wavelength dependence, the reflected power density for real power reflection applied on solar cell, and the normalized reflectance (reflected power density/incident power density) for real reflectance applied on solar cell, a full three-dimensional finite element simulation is performed and discussed for the aforementioned three morphologies. The result of this study shows that the pyramid shape of SWS possesses the best reflectance property in the optical region from 400 to 1000 nm which is useful for silicon solar cell applications

    Effect of microstructures on deformation behaviour of aluminium matrix composites in laser bending

    Get PDF
    Version of RecordPublishe

    Longitudinal 1H MRS of hamster superior colliculus following retinotectal deafferentation

    Get PDF
    Session: Applications of MRS to the Animal Brain - TRADpublished_or_final_versionThe 17th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2009), Honlolulu, HI., 18-24 April 2009. In Proceedings of ISMRM 17th Scientific Meeting & Exhibition, 200

    Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence

    Get PDF

    Remote Data Retrieval for Bioinformatics Applications: An Agent Migration Approach

    Get PDF
    Some of the approaches have been developed to retrieve data automatically from one or multiple remote biological data sources. However, most of them require researchers to remain online and wait for returned results. The latter not only requires highly available network connection, but also may cause the network overload. Moreover, so far none of the existing approaches has been designed to address the following problems when retrieving the remote data in a mobile network environment: (1) the resources of mobile devices are limited; (2) network connection is relatively of low quality; and (3) mobile users are not always online. To address the aforementioned problems, we integrate an agent migration approach with a multi-agent system to overcome the high latency or limited bandwidth problem by moving their computations to the required resources or services. More importantly, the approach is fit for the mobile computing environments. Presented in this paper are also the system architecture, the migration strategy, as well as the security authentication of agent migration. As a demonstration, the remote data retrieval from GenBank was used to illustrate the feasibility of the proposed approach

    An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data

    Get PDF
    Regulatory networks play a central role in cellular behavior and decision making. Learning these regulatory networks is a major task in biology, and devising computational methods and mathematical models for this task is a major endeavor in bioinformatics. Boolean networks have been used extensively for modeling regulatory networks. In this model, the state of each gene can be either ‘on’ or ‘off’ and that next-state of a gene is updated, synchronously or asynchronously, according to a Boolean rule that is applied to the current-state of the entire system. Inferring a Boolean network from a set of experimental data entails two main steps: first, the experimental time-series data are discretized into Boolean trajectories, and then, a Boolean network is learned from these Boolean trajectories. In this paper, we consider three methods for data discretization, including a new one we propose, and three methods for learning Boolean networks, and study the performance of all possible nine combinations on four regulatory systems of varying dynamics complexities. We find that employing the right combination of methods for data discretization and network learning results in Boolean networks that capture the dynamics well and provide predictive power. Our findings are in contrast to a recent survey that placed Boolean networks on the low end of the ‘‘faithfulness to biological reality’’ and ‘‘ability to model dynamics’’ spectra. Further, contrary to the common argument in favor of Boolean networks, we find that a relatively large number of time points in the timeseries data is required to learn good Boolean networks for certain data sets. Last but not least, while methods have been proposed for inferring Boolean networks, as discussed above, missing still are publicly available implementations thereof. Here, we make our implementation of the methods available publicly in open source at http://bioinfo.cs.rice.edu/
    corecore