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Abstract

In this paper, we study the optimal reinsurance and investment problem in a financial mar-

ket with jump-diffusion risky asset. It is assumed that the insurance risk model is modulated

by a compound Poisson process, and that the jumps in both the risky asset and insurance

risk process are correlated through a common shock. Under the criterion of maximizing the

expected exponential utility, we adopt a nonstandard approach to examine the existence and

uniqueness of the optimal strategy. Using the technique of stochastic control theory, closed-form

expressions for the optimal strategy and the value function are derived not only for the expected

value principle but also for the variance premium principle. Also, we investigate the effect of the

common shock parameter as well as some other important parameters on the optimal strategies.

In particular, a numerical example shows that the optimal investment strategy decreases as the

degree of common shock dependence increases but the optimal insurance retention level does

not behave the same.
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1 Introduction

In recent years, optimal reinsurance and investment problems for various risk models have gained a

lot of interest in the financial and actuarial literatures. The technique of stochastic control theory

and the corresponding Hamilton-Jacobi-Bellman equation are frequently used to cope with these

optimization problems. See, for example, Schmidli (2002), Irgens and Paulsen (2004), Promislow

and Young (2005), Bai and Guo (2008), Luo et al. (2008), Liang et al. (2011), Liang et al. (2012),

Liang and Bayraktar (2014), Bi et al.(2016), Landriault et al. (2016), Zheng et al. (2016).

With reinsurance, insurers are able to transfer some of their risks to another party at the expense

of making less potential profit, and hence finding optimal reinsurance strategy to balance their risk

and profit is of great interest to them. In the study of optimal reinsurance contracts, a few objective

functions are commonly seen in the literature. Browne (1995), Schmidli (2001), Liang (2007), and

Luo et al. (2008) consider the objective function that minimizes ruin probability. Kaluszka (2001,

2004) study the optimal reinsurance problem under various mean-variance premium principles of

the reinsurer. Since explicit expression for ruin probability is difficult to derive when the underlying

risk follows a compound Poisson process, some papers including Centeno (1986, 2002), Hald and

Schmidli (2004), and Liang and Guo (2007, 2008) focus on constructing optimal contracts that

maximize the adjustment coefficient by the martingale approach. Moreover, Cai and Tan (2007),

Cai et al. (2008), and Bernard and Tian (2009) adopt the criteria of minimizing tail risk measures

such as value at risk and conditional tail expectation. Our objective in this paper is to maximize

the expected utility of terminal wealth, which is another popular criterion for various optimization

problems in finance and modern risk theory. See, for example, Irgens and Paulsen (2004), Zhang

and Yang (2005), Liang et al. (2011), Yuen et al. (2015), Zhang et al. (2016), and the references

therein.

Besides reinsurance, investment in some risky assets is another important source of risk control.

Most of the literature on investment optimization is based on the assumption that stock price follows

a diffusion-type process, in particular a geometric Brownian motion. However, in the real financial

market, information often comes as a surprise. Such information usually leads to a jump in the price

of stock. Therefore, to model stock price, one may consider using a jump-diffusion model which

allow stock price to jump to a new level and to follow a geometric Brownian motion right after

discrete jumps.

In this paper, under the criterion of maximizing the expected utility of terminal wealth, we

study both optimal reinsurance which is constrained to the interval [0, 1] and optimal investment

with a jump-diffusion risky asset and no short selling. Moreover, the aggregate claims and the stock

price are correlated by means of a common shock. This kind of model assumes that there exists

a common shock affecting the stock market as well as the insurance market. In reality, a common

component can depict a big event which has negative impact on both the financial and insurance

markets. For example, severe events like earthquakes or prolonged extreme weathers not only has
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immediate adverse impact on financial markets, but also induce various insurance claims. Similar

argument applies to other detrimental incidents caused by human or natural disasters. Hence, we

generalize the model of Bi and Guo (2013) from the independent setting to the case where the

aggregate claims process and risky asset process are dependent. We also extend the assumption

of negative jump in Alvarez E. et al. (2014) to negative expected value of jump, which allows the

inclusion of positive jumps, and at the same time also meets the observed fact that the stock market

reactions to negative shocks are usually significantly stronger than the reactions to positive ones.

Therefore, the model of study is practically more reasonable, and definitely makes the optimization

problem more complicated and challenging.

Although research on optimal reinsurance and investment is increasing rapidly, very few of them

deal with the problem in relation to dependence between the risky asset and insurance aggregate

claims. Within the mean-variance framework, Liang et al. (2016) study the optimal reinsurance

and investment problem in a financial market with jump-diffusion risky asset, where the insurance

risk model is modulated by a compound Poisson process, and the two jump-number processes are

correlated through a common shock. This paper extends their work to the optimization problem

of maximizing the expected utility of terminal wealth with the constraint that the optimal rein-

surance strategy lies in the unit interval. Using the technique of stochastic control theory and the

corresponding Hamilton-Jacobi-Bellman equation, we adopt a nonstandard approach to examine

the existence and uniqueness of the optimal strategy, and derive the closed-form expressions for the

optimal strategy and the value function not only for the expected value principle but also for the

variance premium principle. Also, we investigate the effect of the common shock parameter as well

as some other important parameters on the optimal strategies.

The rest of the paper is organized as follows. In Section 2, the model and assumptions are

presented. The main results and the closed-form expressions for the optimal values are derived in

Sections 3. In Sections 4 and 5, we investigate the effects of the common shock as well as other

model parameters on the optimal strategy. Some numerical examples are presented to illustrate the

impact of the parameters on the optimal strategy in Section 6. Finally, Section 7 concludes the

paper.

2 Model and problem formulation

Let (Ω,F , P ) be a probability space with filtration {Ft} containing all objects defined in the follow-

ing.

We consider the financial market where the assets are traded continuously on a finite time hori-

zon [0, T ]. There are a risk-free asset (bond) and a risky asset (stock) in the financial market. The
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price of the bond is given by {
dB(t) = rB(t)dt, t ∈ [0, T ],

B(0) = 1,

where r(> 0) is the interest rate of the bond, and it is a constant.

The price of the stock is modeled by the following jump-diffusion process
dS(t) = S(t−)

b(t)dt+ σ(t)dW (t) + d

M2(t)∑
i=1

Yi

 , t ∈ [0, T ],

S(0) = S0,

(2.1)

where S0 is the deterministic initial price, b(t)(> r) is the appreciation rate, σ(t) > 0 is the volatility

coefficient, and {W (t)}t≥0 is a standard {Ft}t≥0−adapted Brownian motion, {M2(t)}t≥0 is a Poisson

process with intensity parameter λ2 + λ > 0, and the jump sizes {Yi, i ≥ 1} are assumed to be an

i.i.d sequence with values in (−1,∞). It is assumed that b(t) and σ(t) are deterministic, Borel-

measurable and bounded on [0, T ]. Note that Yi > −1 ensures the positivity of the stock price.

Let Y be a generic random variable which has the same distribution as Yi, i ≥ 1, and FY (·) be

the cumulative distribution function of Y . We assume that E(Y ) = µ21 and E(Y 2) = µ22 > 0,

the moment generating function MY (r) exists, and that {W (t)}t≥0, {M2(t)}t≥0 and {Yi, i ≥ 1} are

mutually independent. Furthermore, we impose throughout this paper the following assumption.

Assumption 2.1. The value of the expected jump size µ21 satisfies

− a(t)

λ+ λ2
< µ21 < 0,

where a(t) = b(t)− r > 0.

The assumption of µ21 < 0 mainly comes from an empirically observed fact that the stock market

reactions to negative shocks are usually significantly stronger than the reactions to positive ones (see

Alvarez E et al. (2014)). This is also the celebrated “bad news” principle originally introduced in

the seminal study by Bernanke (1983). Moreover, in the economic market, the expected return rate

of the risky asset would be larger than the risk-free interest rate. Therefore, it is reasonable to

assume that b(t)+(λ2 +λ)µ21 > r, which can be rewritten as a(t)+(λ2 +λ)µ21 > 0, or equivalently,

µ21 > −a(t)/(λ2 + λ).

The diffusion component in equation (2.1) characterizes the normal fluctuation in the stock

price, due to gradual changes in economic conditions or the arrival of new information which causes

marginal changes in the stock price. The jump component describes sudden changes in the stock

price due to the arrival of important new information which has a large effect on the stock price.

By stochastic differential equation (SDE) theory, a unique solution exists for SDE (2.1).
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The risk process {U(t)}t≥0 of the insurer is modeled by

dU(t) = cdt− d
M1(t)∑
i=1

Xi, U(0) = U0, (2.2)

where U0 is the deterministic initial reserve of the insurer, the constant c is the premium rate, the

claim-number process {M1(t)}t≥0 is a Poisson process with intensity λ1 + λ > 0, Xi is the size of

the ith claim, and {Xi, i ≥ 1} are assumed to be an i.i.d. sequence and independent of {M1(t)}t≥0.

Note that the compound Poisson process
∑M1(t)
i=1 Xi represents the cumulative amount of claims in

time interval [0, t]. Let X be a generic random variable which has the same distribution as Xi, i ≥ 1,

and FX(·) be the cumulative distribution function of X. Write the mean of X and the second

moment of X as E(X) = µ11 > 0 and E(X2) = µ12 > 0, respectively, and assume that the moment

generating function MX(r) exists. The risk process defined in equation (2.2), from the perspective

of the insurer, is really a pay-off process associated with the (insurance) contracts he (or she) has

entered. Furthermore, the two jump processes {M1(t)}t≥0 and {M2(t)}t≥0 are correlated in the way

that

M1(t) = N1(t) +N(t) and M2(t) = N2(t) +N(t),

with N1(t), N2(t), and N(t) being three independent Poisson processes with parameters λ1, λ2, and

λ, respectively. It is obvious that the dependence between the financial risky asset and the aggregate

claims processes is due to a common shock governed by the counting process N(t). Moreover, it

is assumed that {W (t)}t≥0, {N1(t)}t≥0, {Xi, i ≥ 1}, {N2(t)}t≥0, {Yi, i ≥ 1} and {N(t)}t≥0 are

mutually independent.

Assume that the insurer is allowed to invest all of his (or her) wealth in the financial market. Let

ξ(t) and u(t) denote the total market value of the agent’s wealth in the bond and stock, respectively,

and ξ(t)+u(t) = R(t). In this paper, short-selling of the stock is prohibited, i.e., u(t) ≥ 0, but ξ(t) is

not constrained. Furthermore, it is assumed that the insurance company can purchase proportional

reinsurance. That is, it can reinsure a fraction of its claims with the retention proportion q(t) ∈ [0, 1]

for a claim occurring at time t. As a result, the insurer pays q(t)X of a claim occurring at time t,

and the reinsurer pays (1−q(t))X. Also, the reinsurance premium is paid at rate δ(q(t)). A strategy

π(t) = (u(t), q(t)) is said to be admissible if u(t) and q(t) are Ft-predictable processes, and satisfy

u(t) ≥ 0, q(t) ∈ [0, 1], and E[
∫ t

0
u2(s)ds] < ∞ for all t ≥ 0. We denote the set of all admissible

strategies by Π. Then the resulting surplus process R(t) is given by

dR(t) = [rR(t) + a(t)u(t) + c− δ(q(t))] dt+ u(t)σ(t)dW (t)

+ u(t)d

M2(t)∑
i=1

Yi − q(t)d
M1(t)∑
i=1

Xi,

R(0) = R0.

(2.3)
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Corresponding to an admissible trading strategy π(·) and a deterministic initial capital R0, there

exists a unique R(t) satisfies (2.3).

Suppose that the insurer is interested in maximizing the expected utility of terminal wealth, say

at time T . The utility function is w(x), which satisfies w′ > 0 and w′′ < 0. Then the objective

function is

Jπ(t, x) = E[w(R(T ))|R(t) = x],

and the corresponding value function is given by

V (t, x) = sup
π∈Π

Jπ(t, x). (2.4)

We assume that the insurer has an exponential utility function

w(x) = −β
ν
e−νx

with β > 0 and ν > 0. This utility has constant absolute risk aversion (CARA) parameter ν. Such

a utility function plays an important role in insurance mathematics and actuarial practice as this is

the only function under which the principle of “zero utility” gives a fair premium that is independent

of the level of reserve of an insurance company (see Gerber (1979)).

Let C1,2 denote the space of φ(t, x) such that φ and its partial derivatives φt, φx and φxx are

continuous on [0, T ] × R. To solve the optimization problem, we use the dynamic programming

approach described in Fleming and Soner (2006). From the standard arguments, we see that if the

value function V ∈ C1,2, then V satisfies the following Hamilton-Jacobi-Bellman (HJB) equation

sup
π∈Π
AπV (t, x) = 0, (2.5)

for t < T with the boundary condition

V (T, x) = w(x), (2.6)

where
AπV (t, x) = Vt(t, x) + [rx+ a(t)u+ c− δ(q)]Vx(t, x) + 1

2σ(t)2u2Vxx(t, x)

+λ2E [V (t, x+ uY )− V (t, x)] + λ1E[V (t, x− qX)− V (t, x)]

+λE[V (t, x+ uY − qX)− V (t, x)].

Using the standard methods of Fleming and Soner (2006), we have the following verification

theorem.

Theorem 2.1. Let W ∈ C1,2 be a classical solution to (2.5) that satisfies (2.6). Then the value

function V given by (2.4) coincides with W . That is,

W (t, x) = V (t, x).
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Furthermore, set π∗ = (u∗, q∗) such that

Aπ
∗
V (t, x) = 0

holds for all (t, x) ∈ [0, T )×R. Then π∗(t, R∗(t)) = (u∗(t, R∗(t)), q∗(t, R∗(t))) is the optimal strategy,

where R∗(t) is the surplus process under the optimal strategy.

3 Optimal results for the compound Poisson risk model

In this section, we consider the optimization problem for risk model (2.3). To solve the equation

supu,q

{
Vt(t, x) + [rx+ a(t)u+ c− δ(q)]Vx(t, x) + 1

2σ(t)2u2Vxx(t, x)

+λ2E[V (t, x+ uY )− V (t, x)] + λ1E[V (t, x− qX)− V (t, x)]

+λE[V (t, x+ uY − qX)− V (t, x)]

}
= 0,

with the boundary condition V (T, x) = w(x), inspired by Browne (1995), we try to fit a solution of

the form

V (t, x) = −β
ν

exp
[
−νxer(T−t) + h(T − t)

]
, (3.1)

where h(·) is a suitable function such that (3.1) is a solution to (2.5). The boundary condition

V (T, x) = w(x) implies that h(0) = 0.

From (3.1), we get

Vt = V (t, x)
[
νxrer(T−t) − h′(T − t)

]
,

Vx = V (t, x)
[
−νer(T−t)

]
,

Vxx = V (t, x)
[
ν2e2r(T−t)] ,

E[V (t, x− qX)− V (t, x)] = V (t, x)
[
MX(νqer(T−t))− 1

]
,

E[V (t, x+ uY )− V (t, x)] = V (t, x)
[
MY (−νuer(T−t))− 1

]
,

E[V (t, x+ uY − qX)− V (t, x)] = V (t, x)
[
MX(νqer(T−t))MY (−νuer(T−t))− 1

]
.

(3.2)

Putting (3.2) back into equation (2.5) and canceling the like terms yield

infu,q

{
−h′(T − t)− (ua(t) + c− δ(q))νer(T−t) + 1

2u
2σ2(t)ν2e2r(T−t)

+λ1

[
MX(νqer(T−t))− 1

]
+ λ2

[
MY (−νuer(T−t))− 1

]
+λ
[
MX(νqer(T−t)) ·MY (−νuer(T−t))− 1

]}
= 0,

(3.3)

7



for t < T . Let
f(u, q) = (δ(q)− ua(t))νer(T−t) + 1

2u
2σ2(t)ν2e2r(T−t)

+λ1MX(νqer(T−t)) + λ2MY (−νuer(T−t))

+λMX(νqer(T−t)) ·MY (−νuer(T−t)).

For any t ∈ [0, T ], we have

∂f(u,q)
∂u =

[
−a(t) + uσ2(t)νer(T−t) −M ′Y

(
−νuer(T−t)

) (
λ2 + λMX

(
νqer(T−t)

))]
· νer(T−t),

∂f(u,q)
∂q =

[
δ′(q) +M ′X

(
νqer(T−t)

) (
λ1 + λMY

(
−νuer(T−t)

))]
· νer(T−t),

∂2f(u,q)
∂u2 =

[
σ2(t) +M ′′Y

(
−νuer(T−t)

) (
λ2 + λMX

(
νqer(T−t)

))]
· ν2e2r(T−t) > 0,

∂2f(u,q)
∂q2 = δ′′(q)νer(T−t) +M ′′X

(
νqer(T−t)

) (
λ1 + λMY

(
−νuer(T−t)

))
· ν2e2r(T−t),

∂2f(u,q)
∂u∂q = −λM ′X

(
νqer(T−t)

)
M ′Y

(
−νuer(T−t)

)
· ν2e2r(T−t),

where M ′Z(r) = E(ZerZ) and M ′′Z(r) = E(Z2erZ).

Lemma 3.1. The function f(u, q) is a convex function with respect to u and q, respectively.

Proof. To prove f(u, q) is a convex function with respect to (w.r.t.) u and q, it is sufficient to

prove the Hessian matrix of f(u, q) is a positive definite matrix.

Let matrices

A =

 σ2(t) + λ2M
′′
Y (·) 0

0 δ′′(q)ν−1e−r(T−t) + λ1M
′′
X(·)

 ,

and

B =

 MX(·)M ′′Y (·) −M ′X(·)M ′Y (·)

−M ′X(·)M ′Y (·) M ′′X(·)MY (·)

 .

Then the Hessian matrix can be decomposed as
∂2f(u,q)
∂u2

∂2f(u,q)
∂u∂q

∂2f(u,q)
∂q∂u

∂2f(u,q)
∂q2

 = (A + λ ·B) · ν2e2r(T−t).

It is easy to see that matrix A is a positive definite matrix. Also, it follows from the Cauchy−Schwarz

inequality that matrix B is a nonnegative definite matrix. Thus, we can conclude that the Hessian

matrix is positive definite. �
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Therefore, the minimizer (ū, q̄) of f(u, q) satisfies the equations −a(t) + uσ2(t)νer(T−t) −M ′Y
(
−νuer(T−t)

) (
λ2 + λMX

(
νqer(T−t)

))
= 0,

δ′(q) +M ′X
(
νqer(T−t)

) (
λ1 + λMY

(
−νuer(T−t)

))
= 0.

(3.4)

Moreover, using arguments similar to those in the proof of Lemma 3.2 of Yuen et al. (2015), one

can derive the following result.

Lemma 3.2. For any t ∈ [0, T ], if both π̂ = (û, q̂) and π̃ = (ũ, q̃) are the solutions to equation (3.4),

then we have π̂ = π̃.

Then the uniqueness of the solution to equation (3.4) can be proved using Lemma 3.2. The

following two subsections discuss the optimal investment and reinsurance problem in details for two

kinds of premium principle: expected value principle and variance premium principle.

3.1 Expected value principle

In this subsection, we assume that the reinsurance premium is calculated according to the expected

value principle. That is,

δ(q) = (1 + η)(1− q)a1,

where a1 = (λ1 + λ)µ11 and η is the safety loading of the reinsurer. Then equation (3.4) becomes −a(t) + uσ2(t)νer(T−t) −M ′Y
(
−νuer(T−t)

) (
λ2 + λMX

(
νqer(T−t)

))
= 0,

−(1 + η)a1 +M ′X
(
νqer(T−t)

) (
λ1 + λMY

(
−νuer(T−t)

))
= 0,

or equivalently,  a(t) + σ2(t)n+M ′Y (n)(λ2 + λMX(m)) = 0,

−(1 + η)a1 +M ′X(m)(λ1 + λMY (n)) = 0,
(3.5)

where n = −νuer(T−t) and m = νqer(T−t), and we have

Lemma 3.3. Under Assumption 2.1, there is a unique solution to each of the following equations

a(t) + µ21(λ2 + λMX(m)) = 0, (3.6)

and

a(t) + σ2(t)n+M ′Y (n)(λ2 + λ) = 0, (3.7)

for any t ∈ [0, T ].
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Proof. Under Assumption 2.1, we can directly obtain the unique positive solution to equation

(3.6) given by

m1(t) = M−1
X

(
−a(t) + λ2µ21

λµ21

)
.

We now consider equation (3.7). Let

g1(n) = a(t) + σ2(t)n and g2(n) = −M ′Y (n)(λ2 + λ).

Then we have
g2(0) = −(λ2 + λ)µ21,

g′2(n) = −(λ2 + λ)M ′′Y (n) < 0.

That is, for any t ∈ [0, T ], g2(n) is a strictly decreasing function with g2(0) = −(λ2 + λ)µ21.

Furthermore, g1(n) is an increasing linear function with

g1(0) = a(t) > g2(0).

Therefore, g1(n) and g2(n) have a unique point of intersection at some n1(t) < 0. That is, equation

(3.7) has a unique negative root. �

Lemma 3.4. For any t ∈ [0, T ], the unique positive solution to the equation

−(1 + η)a1 +M ′X(m)(λ1 + λ) = 0 (3.8)

is

m2 = (M ′X)−1((1 + η)µ11).

Furthermore, there exists a unique negative root n2 < 0 of the equation

−(1 + η)a1 + µ11(λ1 + λMY (n)) = 0. (3.9)

Proof. For equation (3.8), simple calculations yield m2. We now consider equation (3.9), which

can be rewritten as

MY (n) = 1 +
λ1 + λ

λ
· η.

Denote g(n) = MY (n). So, we have g′(n) = M ′Y (n) = E(Y enY ) and

g′′(n) = E
(
Y 2enY

)
> 0.

Therefore, g′(n) is a strictly increasing function w.r.t. n, and thus for any n ≤ 0, we have g′(n) ≤
g′(0) = E(Y ) = µ21 < 0. If we have g′(n) > 0 for some n > 0, then there exists an n0 > 0 such that

g′(n0) = 0, and thus we have g′(n) < 0 for any n < n0; on the other hand, for any n > n0, we have

g′(n) > 0, which means that function g(n) is a decreasing convex function w.r.t. n ≤ n0.
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Since g(0) = MY (0) = 1, there exists a unique n2 < 0 such that g(n2) = 1 + ((λ1 + λ)/λ) · η.

That is, equation

MY (n) = 1 +
λ1 + λ

λ
· η

has a unique negative solution. This completes the proof. �

The next lemma states the existence and uniqueness of the solution to equation (3.5).

Lemma 3.5. Let m1(t) and m2 be the unique positive root of equations (3.6) and (3.8), n1(t) and

n2 be the unique negative roots of equations (3.7) and (3.9), respectively. If inequalities m1(t) > m2,

n1(t) > n2,

or  m1(t) < m2,

n1(t) < n2,

hold for any t ∈ [0, T ], then equation (3.5) has a unique negative root n̄(T − t) and positive root

m̄(T − t).

Proof. Let

H1(n,m) = a(t) + σ2(t)n+M ′Y (n)(λ2 + λMX(m)),

and assume that the equation H1(n,m) = 0 implies the relationship between n and m by m = f1(n).

Under Assumption 2.1, it follows from Lemma 3.3 that the equations H1(0,m) = 0 and H1(n, 0) = 0

have unique positive solution m1(t) and negative solution n1(t), respectively. That is, for any

t ∈ [0, T ], the continuous function f1(n) has the value of f1(0) = m1(t) > 0, and f1(n1(t)) = 0 with

n1(t) < 0. Let

H2(n,m) = −(1 + η)a1 +M ′X(m)(λ1 + λMY (n)),

and assume that the equation H2(n,m) = 0 implies another relationship between n and m by

m = f2(n). Along the same lines, one can show that for any t ∈ [0, T ], the continuous function f2(n)

has the value of f2(0) = m2 and f2(n2) = 0 with m2 > 0 and n2 < 0.

Moreover, differentiating both side of the equations H1(n,m) = 0 and H2(n,m) = 0 w.r.t. n

yields

f ′1(n) = −σ
2(t) +M ′′Y (n)(λ2 + λMX(m))

λM ′X(m) ·M ′Y (n)
,

and

f ′2(n) = − λM ′X(m) ·M ′Y (n)

M ′′X(m)(λ1 + λMY (n))
,

11



respectively. Parallel to the proof of Lemma 3.4, it can be shown that f1(n) is an increasing function

w.r.t. n ≤ n0, and f2(n) is also an increasing function w.r.t. n ≤ n0. Therefore, for any t ∈ [0, T ],

if the following inequalities  m1(t) > m2,

n1(t) > n2,

or  m1(t) < m2,

n1(t) < n2,

hold, the functions f1(n) and f2(n) have at least one point of intersection at some n̄(T − t) < 0. It

follows from Lemma 3.2 that equation (3.5) has a unique root (n̄(T − t), m̄(T − t)) with m̄(T − t) =

f1(n̄(T − t)) = f2(n̄(T − t)) > 0. �

It follows from Lemma 3.5 that −νū(T − t)er(T−t) = n̄(T − t) and νq̄(T − t)er(T−t) = m̄(T − t).
Thus, we have 

ū(T − t) = − n̄(T − t)
ν

e−r(T−t),

q̄(T − t) =
m̄(T − t)

ν
e−r(T−t).

(3.10)

For convenient discussion, let a(t) ≡ a and σ(t) ≡ σ be constant parameters. Then m̄(T − t) and

n̄(T − t) in Lemma 3.5 become constants m̄ and n̄, respectively, and

m1(t) ≡ m1 = M−1
X

(
−a+ λ2µ21

λµ21

)
is also a constant. Before discussing the optimal values in details, we give the following lemma.

Lemma 3.6. Under Assumption 2.1, for any t ∈ [0, T ], there exists a unique root to the equation

a+ σ2n+M ′Y (n)
(
λ2 + λMX

(
νer(T−t)

))
= 0. (3.11)

Proof. Let

ĝ1(n) = a+ σ2n,

and

ĝ2(n) = −M ′Y (n)
(
λ2 + λMX

(
νer(T−t)

))
.

Then we have
ĝ2(0) = −

(
λ2 + λMX

(
νer(T−t)

))
µ21,

ĝ′2(n) = −
(
λ2 + λMX

(
νer(T−t)

))
M ′′Y (n) < 0.

12



That is, for any t ∈ [0, T ], ĝ2(n) is a strictly decreasing function with

ĝ2(0) = −
(
λ2 + λMX

(
νer(T−t)

))
µ21.

Furthermore, ĝ1(n) is an increasing linear function with ĝ1(0) = a.

Let

t2 = T − 1

r
ln

(
1

ν
·M−1

X

(
−a+ λ2µ21

λµ21

))
= T − 1

r
ln
(m1

ν

)
.

It is not difficult to see that

a = −
(
λ2 + λMX

(
νer(T−t2)

))
µ21.

Then we have the following inequality

ĝ1(0) = a < ĝ2(0) = −
(
λ2 + λMX

(
νer(T−t)

))
µ21,

for 0 < t < t2, and thus ĝ1(n) and ĝ2(n) have a unique point of intersection at some n̂1(T − t) > 0.

For t > t2, we obtain

ĝ1(0) = a > ĝ2(0) = −
(
λ2 + λMX

(
νer(T−t)

))
µ21,

so ĝ1(n) and ĝ2(n) have a unique point of intersection at some n̂2(T − t) < 0. That is, equation

(3.11) has a unique root. �

Let t1 = T − (1/r) ln(m̄/ν) for ν < m̄ < νerT . When m̄ ≤ ν, we denote t1 = T ; and when

m̄ ≥ νerT , we denote t1 = 0. Under the constraints of the retention level qt ∈ [0, 1] and investment

strategy ut ≥ 0, we discuss the optimal values in details in the following context.

When 0 ≤ t ≤ t1, we have (u∗, q∗) = (ū(T − t), q̄(T − t)). Substituting (ū(T − t), q̄(T − t)) into

(3.3), we get

h1(T − t) = h̃1(T − t) + C̄, (3.12)

where

h̃1(T − t) = 1
r [(1 + η)a1 − c]νer(T−t) − (λ1 + λ2 + λ+ (1 + η)a1m̄− an̄)(T − t)

+(λ1MX(m̄) + λ2MY (n̄) + λMX(m̄)MY (n̄))(T − t),

and C̄ is a constant that will be determined later.

When t ≥ t1, we have q̄(T − t) ≥ 1, and thus q∗ = 1. Substituting q∗ = 1 into (3.3), we get

infu

{
−h′(T − t)− (ua+ c)νer(T−t) + 1

2u
2σ2ν2e2r(T−t)

+λ1

[
MX

(
νer(T−t)

)
− 1
]

+ λ2

[
MY

(
−νuer(T−t)

)
− 1
]

+λ
[
MX

(
νer(T−t)

)
·MY

(
−νuer(T−t)

)
− 1
]}

= 0.

(3.13)
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Since function f1(n) is an increasing function w.r.t n ≤ n0, it is not difficult to prove that m̄ < m1,

and thus we have t1 > t2. By Lemma 3.6, we obtain the minimizer of equation (3.13) given by

û(T − t) = − n̂2(T − t)
ν

e−r(T−t), (3.14)

where n̂2(T − t) is the unique negative root of equation (3.11) for any t1 ≤ t ≤ T .

Substituting (û(T − t), 1) into (3.3), we get

h2(T − t) = −1

r
cν(er(T−t) − 1)− (λ1 + λ2 + λ)(T − t) +

∫ T−t

0

(an̂(s) +
1

2
σ2n̂2

2(s))ds

+

∫ T−t

0

(λ1MX(νers) +MY (n̂2(s))(λ2 + λMX(νers)))ds.

(3.15)

Let

C̄ = h2(T − t1)− h̃1(T − t1).

Then we have

h2(T − t1) = h̃1(T − t1) + C̄ = h1(T − t1).

The main result of this subsection is summarized in the following theorem.

Theorem 3.1. Recall (ū(T − t), q̄(T − t)) of (3.10) and û(T − t) of (3.14). For any t ∈ [0, T ], the

optimal strategy for risk model (2.3) is

(u∗(T − t), q∗(T − t)) =


(ū(T − t), q̄(T − t)), 0 ≤ t < t1,

(û(T − t), 1), t1 ≤ t ≤ T,

and the value function is

V (t, x) =


− β

ν
exp

{
− νxer(T−t) + h1(T − t)

}
, 0 ≤ t ≤ t1,

− β

ν
exp

{
− νxer(T−t) + h2(T − t)

}
, t1 ≤ t ≤ T.

where h1(T − t) and h2(T − t) are defined in (3.12) and (3.15), respectively.

Remark 3.1. Since

h1(T − t1) = h2(T − t1),

V (t, x) is a continuous function for any (t, x) ∈ [0, T ]× R. Furthermore,

h′1(T − t1) = −cm̄− an̄− (λ1 + λ2 + λ) + 1
2σ

2n̄2

+λ1M1(n̄) +M2(m̄)(λ2 + λM1(n̄))

= h′2(T − t1).

Therefore, we have V (t, x) ∈ C1,2. That is, V (t, x) is a classical solution to the HJB equation (2.5).
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3.2 Variance premium principle

In this subsection, we assume that the reinsurance premium is calculated according to the variance

premium principle. That is,

δ(q) = (1− q)a1 + Λ(1− q)2σ2
1 ,

where Λ is the safety loading of reinsurer and σ2
1 = (λ1 + λ)µ12. Then equation (3.4) becomes −a(t) + uσ2(t)νer(T−t) −M ′Y

(
−νuer(T−t)

) (
λ2 + λMX

(
νqer(T−t)

))
= 0,

−a1 − 2Λσ2
1 + 2Λσ2

1q +M ′X
(
νqer(T−t)

) (
λ1 + λMY

(
−νuer(T−t)

))
= 0,

or equivalently,  a(t) + σ2(t)n+M ′Y (n)(λ2 + λMX(m)) = 0,

−a1 − 2Λσ2
1 + 2Λσ2

1
m
ν e
−r(T−t) +M ′X(m)(λ1 + λMY (n)) = 0,

(3.16)

where n = −νuer(T−t) and m = νqer(T−t). Then we have

Lemma 3.7. For any t ∈ [0, T ], there is a unique positive solution m3(t) < νer(T−t) to the

equation

−a1 − 2Λσ2
1 + 2Λσ2

1

m

ν
e−r(T−t) +M ′X(m)(λ1 + λ) = 0. (3.17)

Moreover, there exists a unique negative solution n3 < 0 to the equation

−a1 − 2Λσ2
1 + µ11(λ1 + λMY (n)) = 0. (3.18)

Proof. We first discuss equation (3.17). Let

g3(m) = a1 + 2Λσ2
1 − 2Λσ2

1

m

ν
e−r(T−t),

and

g4(m) = M ′X(m)(λ1 + λ).

Then we have 
g4(0) = (λ1 + λ)µ11 = a1,

g′4(m) = (λ1 + λ)M ′′X(m) = (λ1 + λ)E(X2eXm) > 0,

limm→+∞ g4(m) = +∞.

Besides, it is easy to see that g3(m) is a decreasing function w.r.t. m with g3(0) = a1 + 2Λσ2
1 > g4(0) = a1,

g3(νer(T−t)) = a1 = g4(0),
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Therefore, g3(m) and g4(m) have a unique point of intersection at some point m3(t) ∈ (0, νer(T−t)).

That is, equation (3.17) has a unique positive root which is less than νer(T−t).

We now return to equation (3.18), which can be rewritten as

MY (n) = 1 +
2Λσ2

1

λµ11
. (3.19)

Using arguments similar to those in the proof of Lemma 3.4, we can prove that (3.19) has a unique

negative root. Hence, the proof is completed. �

Analogous to Lemma 3.5, one can use Lemma 3.3 and Lemma 3.7 to derive the following inequal-

ities for the existence and uniqueness of the solution to equation (3.16) under the variance premium

principle.

Lemma 3.8. Let m1(t) and m3(t) be the unique positive roots of equations (3.6) and (3.17), re-

spectively, and n1(t) and n3 be the unique negative roots of equations (3.7) and (3.18), respectively.

If inequalities  m1(t) > m3(t),

n1(t) > n3,

or  m1(t) < m3(t),

n1(t) < n3,

hold for any t ∈ [0, T ], then equation (3.16) has a unique root (ñ(T − t), m̃(T − t)) with ñ(T − t) < 0

and 0 < m̃(T − t)) < νer(T−t).

From Lemma 3.8, we get −νū(T − t)er(T−t) = ñ(T − t) and νq̄(T − t)er(T−t) = m̃(T − t). Thus,

the unique solution to equation (3.2) is given by ū(T − t) = − ñ(T−t)
ν e−r(T−t),

q̄(T − t) = m̃(T−t)
ν e−r(T−t).

Notice that ñ(T − t) < 0 and 0 < m̃(T − t)) < νer(T−t), which imply that ũ(T − t) > 0 and

0 < q̃(T − t) < 1. Therefore, we have (u∗(T − t), q∗(T − t)) = (ū(T − t), q̄(T − t)). Substituting

(u∗(T − t), q∗(T − t)) into (3.3), we get

h3(T − t) = 1
r (a1 − c)ν(er(T−t) − 1)− (λ1 + λ2 + λ)(T − t) +

∫ T−t
0

Λ(1− q∗(s))2σ2
1νe

rsds

+
∫ T−t

0
a(T − s)ñ(s)− a1m̃(s) + 1

2σ
2(T − s)ñ2(s)ds

+
∫ T−t

0
λ1MX(m̃(s)) +MY (ñ(s))(λ2 + λMX(m̃(s))ds.

(3.20)

The following theorem summarizes the main result of this subsection.
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Theorem 3.2. Let (ñ(T−t), m̃(T−t)) be the unique root of equation (3.16). Then, for any t ∈ [0, T ],

the optimal strategy for risk model (2.3) under the variance premium principle is u∗(T − t) = − ñ(T−t)
ν e−r(T−t),

q∗(T − t) = m̃(T−t)
ν e−r(T−t),

and the value function is given by

V (t, x) = −β
ν

exp

{
−νxer(T−t) + h3(T − t)

}
.

where h3(T − t) is defined in (3.20).

Remark 3.2. When the risky asset has only negative jumps as in Alvarez E et al. (2014), it is not

difficult to see that MY (n) is a strictly decreasing function w.r.t. n. Therefore, we can directly get

unique negative solutions n2 and n3 to the equations

MY (n) = 1 +
λ1 + λ

λ
· η

and

MY (n) = 1 +
2Λσ2

1

λµ11
,

respectively. That is,

n2 = M−1
Y

(
1 +

λ1 + λ

λ
· η
)
,

and

n3 = M−1
Y

(
1 +

2Λσ2
1

λµ11

)
.

Furthermore, the functions f1(n) and f2(n) in the proof of Lemma 3.5 are increasing function w.r.t.

n ∈ R. In this case, the inequalities for the existence and uniqueness of the optimal strategy are

easier to derive.

4 Effects of common shock on the optimal strategy

In this section, we investigate the effect of the common shock λ on the optimal strategy. We begin

by considering the case under the expected value principle. For notational convenience, we denote
A1 = σ2(t) +M ′′Y (−νuer(T−t))

(
λ2 + λMX(νqer(T−t))

)
,

B1 = M ′′X(νqer(T−t))
(
λ1 + λMY (uνer(T−t))

)
,

C1 =
(
M ′X(νqer(T−t))MY (νuer(T−t))− µ11

)
.
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Proposition 4.1. Suppose that the conditions in Lemma 3.5 hold. Then, for any t ∈ [0, T ],

1. u∗(T − t) decreases w.r.t. the common shock parameter λ; and

2. q∗(T − t) decreases w.r.t. the parameter λ for

0 < η <

M ′X(νqer(T−t))

[
MY (νuer(T−t))− λMX(νqer(T−t))(M ′Y (νuer(T−t)))

2

A1

]
µ11

− 1;

and increases w.r.t. the parameter λ for

η >

M ′X(νqer(T−t))

[
MY (νuer(T−t))− λMX(νqer(T−t))(M ′Y (νuer(T−t)))

2

A1

]
µ11

− 1.

Proof. If q∗ = 1, then the optimal investment strategy u∗(T − t) = û(T − t) which is the unique

solution to the equation

−a(t) + σ2(t)uνer(T−t) −M ′Y (−νuer(T−t))(λ2 + λMX(νer(T−t))) = 0.

Differentiating both sides of this equation w.r.t. λ yields

σ2(t)νer(T−t)u′(λ)−M ′Y (−uνer(T−t))MX(νer(T−t))

+M ′′Y (−uνer(T−t))(νer(T−t))u′(λ)(λ2 + λMX(νer(T−t))) = 0,

and thus

u′(λ) =
M ′Y (−uνer(T−t))MX(νer(T−t))

A1 · νer(T−t)
.

Since u∗(T − t) > 0, we have M ′Y (−u∗(T − t)νer(T−t)) < 0 which yields u′(λ) < 0.

If q∗(T − t) = q̄(T − t), then u∗(T − t) = ū(T − t). Note that (q̄(T − t), ū(T − t)) is given in

(3.10), which is the unique positive solution to the equations −a(t) + uσ2(t)νer(T−t) −M ′Y (−νuer(T−t))(λ2 + λMX(νqer(T−t))) = 0,

−(1 + η)a1 +M ′X(νqer(T−t))(λ1 + λMY (−νuer(T−t))) = 0.

Differentiating both sides of the equations w.r.t. λ yields

u′(λ)σ2(t)νer(T−t) −M ′′Y (−νuer(T−t))(−νer(T−t))u′(λ)(λ2 + λMX(νqer(T−t)))

−M ′Y (−uνer(T−t))[MX(νqer(T−t)) + λM ′X(νqer(T−t))(νer(T−t))q′(λ)] = 0,

M ′′X(νqer(T−t))(νer(T−t))q′(λ)(λ1 + λMY (−νuer(T−t)))

+M ′X(νqer(T−t))[MY (−uνer(T−t)) + λM ′Y (−νuer(T−t))(−νer(T−t))u′(λ)] = 0,
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and then we get

u′(λ) =
M ′Y (νuer(T−t))

[
MX(νqer(T−t))− λM ′X(νqer(T−t))(C1−ηµ11)

B1

]
[
A1 −

(λM ′X(νqer(T−t))M ′Y (νuer(T−t)))
2

B1

]
νer(T−t)

,

and

q′(λ) =

(1 + η)µ11 −M ′X(νqer(T−t))

[
MY (νuer(T−t))− λMX(νqer(T−t))(M ′Y (νuer(T−t)))

2

A1

]
[
B1 −

(λM ′X(νqer(T−t))M ′Y (νuer(T−t)))
2

A1

]
νer(T−t)

.

By Cauchy-Schwarz inequality, it is not difficult to prove that

MX(νqer(T−t))− λ(M ′X(νqer(T−t)))
2
MY (νuer(T−t))

B1
> 0,

A1 − σ2(t)− (λM ′X(νqer(T−t))M ′Y (νuer(T−t)))
2

B1
> 0,

MY (νuer(T−t))− λMX(νqer(T−t))(M ′Y (νuer(T−t)))
2

A1
> 0,

B1 −
(λM ′X(νqer(T−t))M ′Y (νuer(T−t)))

2

A1
> 0.

(4.1)

Since u∗(T − t) is positive, we can show that M ′Y (−νu∗(T − t)er(T−t)) < 0 for any t ∈ [0, T ], and

thus u′(λ) < 0. As for q′(λ), it is not difficult to see that its sign strongly depends on the value of η

and other model parameters. �

As for the effect of the common shock λ on the optimal strategy under the variance premium

principle, we have the following result.

Proposition 4.2. Suppose that the conditions in Lemma 3.8 hold. Then, for any t ∈ [0, T ],

1. u∗(T − t) decreases w.r.t. the common shock parameter λ; and

2. q∗(T − t) decreases w.r.t. the parameter λ for

0 < Λ <

M ′X(νqer(T−t))

[
MY (νuer(T−t))− λMX(νqer(T−t))(M ′Y (νuer(T−t)))

2

A1

]
− µ11

2µ12
;

and increases w.r.t. the parameter λ for

Λ >

M ′X(νqer(T−t))

[
MY (νuer(T−t))− λMX(νqer(T−t))(M ′Y (νuer(T−t)))

2

A1

]
− µ11

2µ12
.
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Proof. Under the variance premium principle, the optimal strategy (u∗(T − t), q∗(T − t)) =

(ū(T − t), q̄(T − t)) is the unique positive solution to the equation −a(t) + uσ2(t)νer(T−t) −M ′Y (−νuer(T−t))(λ2 + λMX(νqer(T−t))) = 0,

−a1 − 2Λσ2
1 + 2Λσ2

1q +M ′X(νqer(T−t))(λ1 + λMY (−νuer(T−t))) = 0.

Similar to the proof of Proposition 4.1, one can also get

u′(λ) =
M ′Y (νuer(T−t))

[
MX(νqer(T−t))− λM ′X(νqer(T−t))(C1−2Λµ12)νer(T−t)

2Λσ2
1+B1·νer(T−t)

]
e−r(T−t)[

A1 −
(λM ′X(νqer(T−t))M ′Y (νuer(T−t)))

2
νer(T−t)

2Λσ2
1+B1·νer(T−t)

]
ν

,

and

q′(λ) =

µ11 + 2Λµ12 −M ′X(νqer(T−t))

[
MY (νuer(T−t))− λMX(νqer(T−t))(M ′Y (νuer(T−t)))

2

A1

]
2Λσ2

1 +B1 · νer(T−t) −
(λM ′X(νqer(T−t))M ′Y (νuer(T−t)))

2
νer(T−t)

A1

.

Again, by applying the Cauchy-Schwarz inequality and making use of (4.1), one can obtain the

desired results. �

Remark 4.1. From the results in Proposition 4.1 and Proposition 4.2, we see that the optimal

investment strategy u∗(T − t) with common shock is always smaller than the one without common

shock dependence not only under the expected value principle but also under the variance premium

principle. For the optimal reinsurance strategy q∗(T − t), whether the value with common shock is

smaller or larger than that without common shock strongly depends on the values of the parameters

in the model of study.

5 Effects of λ1, λ2 and ν

In this section, we continue to investigate the effect of other model parameters, namely λ1, λ2 and ν,

on the optimal strategy. Again, we begin by considering the case under the expected value principle.

Proposition 5.1. Suppose that the conditions in Lemma 3.5 hold. Then

1. If full retention is optimal, i.e., q∗(T − t) ≡ 1, the optimal investment strategy u∗(T − t) is

independent with parameter λ1, and decreases with respect to parameter λ2;

2. If partial retention is optimal, i.e., q∗(T−t) = q̄(T−t), then for any t ∈ [0, T ], u∗(T−t) decreases

w.r.t. each of λ1 and λ2; while q∗(T − t) increases w.r.t. each of λ1 and λ2.

Proof. When full retention level is optimal, i.e., q∗ = 1, then for any t ∈ [0, T ], the optimal

investment strategy u∗(T − t) = û(T − t) is the unique positive solution to the equation

−a(t) + σ2(t)uνer(T−t) −M ′Y
(
−νuer(T−t)

)(
λ2 + λMX

(
νer(T−t)

))
= 0,
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Differentiating both sides of this equation w.r.t. λ2 yields

u′(λ2) =
M ′Y (−uνer(T−t))e−r(T−t)

A1 · ν
.

Since u∗(T − t) = û(T − t) is positive, it is not difficult to see that M ′Y (−u∗(T − t)νer(T−t)) < 0,

and thus u′(λ2) < 0.

When partial retention is optimal, we have q∗(T − t) = q̄(T − t) and u∗(T − t) = ū(T − t) where

(q̄(T − t), ū(T − t)) is the unique positive solution to the equation −a(t) + uσ2(t)νer(T−t) −M ′Y (−νuer(T−t))(λ2 + λMX(νqer(T−t))) = 0,

−(1 + η)(λ1 + λ)µ11 +M ′X(νqer(T−t))(λ1 + λMY (−νuer(T−t))) = 0.

Differentiating both sides of equations w.r.t. each of λ1 and λ2 gives

q′(λ1) =
−M ′X(νqer(T−t))+(1+η)µ11(

B1−
(λM′X (νqer(T−t))M′

Y
(−νuer(T−t)))

2

A1

)
νer(T−t)

,

q′(λ2) =
λM ′X(νqer(T−t))(M ′Y (−νuer(T−t)))

2(
A1·B1−(λM ′X(νqer(T−t))M ′Y (−νuer(T−t)))

2
)
νer(T−t)

,

u′(λ1) =
λM ′X(νqer(T−t))M ′Y (−νuer(T−t))(−M ′X(νqer(T−t))+(1+η)µ11)(

A1·B1−(λM ′X(νqer(T−t))M ′Y (−νuer(T−t)))
2
)
νer(T−t)

,

u′(λ2) =
M ′Y (νqer(T−t))(

A1−
(λM′X (νqer(T−t))M′

Y
(−νuer(T−t)))

2

B1

)
νer(T−t)

.

According to (4.1), it is not difficult to prove that q′(λ2) > 0 and u′(λ2) < 0 for any t ∈ [0, T ].

For the effect of λ1, we can see that the values of q′(λ1) and u′(λ1) strongly depend on the value

of −M ′X(νqer(T−t)) + (1 + η)µ11. That is, when −M ′X(νqer(T−t)) + (1 + η)µ11 > 0 holds, we have

u′(λ1) < 0 while q′(λ1) > 0; otherwise, we have u′(λ1) > 0 while q′(λ1) < 0.

It follows from (3.1) that

(1 + η)(λ1 + λ)µ11 = M ′X

(
νq̄(T − t)er(T−t)

)(
λ1 + λMY

(
−νū(T − t)er(T−t)

))
.

From the proof of Lemma 3.4, it is not difficult to see that for any n < 0, we have MY (n) > MY (0) =

1, and hence MY (−νū(T − t)er(T−t)) > 1. Therefore, we obtain

(1 + η)(λ1 + λ)µ11 = M ′X

(
νq̄(T − t)er(T−t)

)(
λ1 + λMY

(
−νū(T − t)er(T−t)

))
,

> M ′X

(
νq̄(T − t)er(T−t)

)
(λ1 + λ),

which means that inequality

(1 + η)µ11 > M ′X

(
νq̄(T − t)er(T−t)

)
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always holds for any t ∈ [0, T ]. �

To end the section, we present the following proposition which explores the effect of λ1 and λ2

on the optimal strategy under the variance premium principle.

Proposition 5.2. Suppose that the conditions in Lemma 3.8 hold. Then, for any t ∈ [0, T ], u∗(T−t)
decreases w.r.t each of λ1 and λ2; while q∗(T − t) increases w.r.t. each of λ1 and λ2.

In the following proposition, we determine the effect of parameter ν on the optimal strategy.

Here ν is the constant absolute risk aversion parameter for the decision-maker.

Proposition 5.3. Suppose that the conditions in Lemma 3.5 or Lemma 3.8 hold. Then, for any

t ∈ [0, T ], u∗(T −t) and q∗(T −t) decrease with respect to the risk aversion parameter ν, respectively.

Proof. For the expected value principle, when full retention is optimal, we obtain

u′(ν) =
λM ′Y (−νuer(T−t))M ′X(νqer(T−t))− u ·A1

ν ·A1
.

Since the value of M ′Y (−νuer(T−t)) is negative at the optimal investment strategy u∗, one can show

that u′(ν) < 0. On the other hand, when partial retention is optimal, we have[
A1 −

(
λM ′X(νqer(T−t))M ′Y (νuer(T−t))

)2
B1

]
· (u′(ν)ν + u) = 0.

Since

A1 −
(
λM ′X(νqer(T−t))M ′Y (νuer(T−t))

)2
B1

> 0

always holds for any t ∈ [0, T ], we have u′(ν)ν + u = 0, which means that u′(ν) = −u/ν < 0.

Similarly, it can be shown that q′(ν) = −q/ν < 0.

For the variance premium principle case, we have

q′(ν) =

−
[
B1 · νer(T−t) −

(λM ′X(νqer(T−t))M ′Y (νuer(T−t)))
2
νer(T−t)

A1

]
q

2Λσ2
1 +

[
B1 · νer(T−t) −

(λM ′X(νqer(T−t))M ′Y (νuer(T−t)))
2
νer(T−t)

A1

]
ν

,

and

u′(ν) =

2Λσ2
1q
ν − u

[
B1·νer(T−t)

λM ′X(νqer(T−t))M ′Y (νuer(T−t))
− λM ′X(νqer(T−t))M ′Y (νuer(T−t))

A1

]
2Λσ2

1+νB1·νer(T−t)
λM ′X(νqer(T−t))M ′Y (νuer(T−t))

− λM ′X(νqer(T−t))M ′Y (νuer(T−t))

A1

.

Since M ′Y (νuer(T−t)) < 0 at u = u∗, it follows from (4.1) that

B1 · νer(T−t)

λM ′X(νqer(T−t))M ′Y (νuer(T−t))
− λM ′X(νqer(T−t))M ′Y (νuer(T−t))

A1
< 0,
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and

B1 · νer(T−t) −
(
λM ′X(νqer(T−t))M ′Y (νuer(T−t))

)2
νer(T−t)

A1
> 0,

which implies that q′(ν) < 0 and u′(ν) < 0. �

6 Numerical examples

In this section, we again assume that a(t) ≡ a and σ(t) ≡ σ are constant parameters. Furthermore,

we assume that the density functions of claim sizes {Xi} and jump amplitudes {Yi} are given by

f1(x) =

{
α1e
−α1x, x > 0,

0, x < 0,

and

f2(y) =

{
α2e

α2y, y < 0,

0, y > 0,

respectively, with α1 > 0 and α2 > 0. Then we have
MX

(
νqer(T−t)

)
=

α1

α1 − νqer(T−t)
,

MY

(
−νuer(T−t)

)
=

α2

α2 − νuer(T−t)
.

The minimizer (q̄(T − t), ū(T − t)) of (3.3) under the expected value principle satisfies the following

equations 
a− uσ2νer(T−t) =

α2

(α2 − νuer(T−t))2

(
λ2 +

λα1

α1 − νqer(T−t)

)
,

(1 + η)(λ1 + λ)

α1
=

α1

(α1 − νqer(T−t))2

(
λ1 +

λα2

α2 − νuer(T−t)

)
,

and the minimizer (q̄(T − t), ū(T − t)) of (3.3) under the variance premium principle is the solution

to the following equations
a− uσ2νer(T−t) =

α2

(α2 − νuer(T−t))2

(
λ2 +

λα1

α1 − νqer(T−t)

)
,

a1 + 2Λσ2
1(1− q) =

α1

(α1 − νqer(T−t))2

(
λ1 +

λα2

α2 − νuer(T−t)

)
,

where a1 = (λ1 + λ)/α1 and σ2
1 = 2(λ1 + λ)/α2

1.

Besides, for the expected value principle, if q∗(T − t) ≡ 1, then u∗(T − t) = û(T − t) satisfies the

equation

a− uσ2νer(T−t) =
α2

(α2 − νuer(T−t))2

(
λ2 +

λα1

α1 − νer(T−t)

)
.

23



In the following two examples, we let η = Λσ2
1/a1. Hence, we have

(1 + η)a1 = a1 + Λσ2
1 , (6.1)

which implies that when the insurer transfers all the risk to the reinsurer, i.e., q = 0, the reinsurance

premiums under the two premium principles are the same.

Remark 6.1. Note that, under condition (6.1), for any q ∈ (0, 1), we have

(1 + η)(1− q)a1 = (1− q)a1 + η(1− q)a1

= (1− q)a1 + Λ(1− q)σ2
1

> (1− q)a1 + Λ(1− q)2σ2
1 . (6.2)

Inequality (6.2) implies that under condition (6.1), the reinsurance premium calculated under ex-

pected value principle is more expensive than that under the variance premium principle.

Example 6.1. In this example, we set T = 15, t = 5, r = 0.05, b = 0.3, σ = 0.35, ν = 0.6, Λ = 2,

η = 2, α1 = 2 and α2 = 5. The results are shown in Tables 1, 2 and 3.

Table 1 Effect of λ on the optimal strategy

λ 0 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6

expected value q∗ 0.85450 0.83365 0.82322 0.81799 0.81955 0.82264 0.83155 0.84231 0.85379

principle u∗ 1.42342 1.23783 1.07927 0.80923 0.68982 0.57794 0.37186 0.18406 0.01040

variance premium q∗ 0.68130 0.67008 0.66417 0.66047 0.66083 0.66202 0.66586 0.67074 0.67606

principle u∗ 1.42342 1.25882 1.11503 0.86754 0.75793 0.65538 0.46720 0.29674 0.14009

Table 2 Effect of λ1 on the optimal strategy

λ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

expected value q∗ 0.79792 0.80954 0.81721 0.82264 0.82669 0.82983 0.83233 0.83438 0.83607

principle u∗ 0.59092 0.58487 0.58083 0.57794 0.57599 0.57408 0.57273 0.57163 0.57071

variance premium q∗ 0.64766 0.65435 0.65882 0.66202 0.66442 0.66629 0.66779 0.66901 0.67003

principle u∗ 0.66158 0.65871 0.65677 0.65538 0.65433 0.65351 0.65286 0.65231 0.65187
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Table 3 Effect of λ2 on the optimal strategy

λ2 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

expected value q∗ 0.80388 0.80916 0.81400 0.82264 0.83016 0.83682 0.84278 0.84817 0.85309

principle u∗ 0.86604 0.78837 0.71479 0.57794 0.45241 0.33606 0.22734 0.12508 0.02840

variance premium q∗ 0.65152 0.65448 0.65720 0.66202 0.66620 0.66989 0.67318 0.67616 0.67887

principle u∗ 0.95335 0.87281 0.79666 0.65538 0.52613 0.40660 0.29511 0.19041 0.09154

From Table 1 with λ1 = 0.4 and λ2 = 0.2, we see that the optimal strategy q∗ decreases with

λ ∈ [0, 0.25], and then increases with λ for λ > 0.25 while u∗ decreases as the value of λ increases.

The numerical values in Table 2 with λ2 = 0.2 and λ = 0.3 and Table 3 with λ1 = 0.4 and λ = 0.3

indicate that a greater value of λ1 (or λ2) yields a greater value of q∗ but a smaller value of u∗.

These results are natural consequences of Propositions 4.1, 4.2, 5.1 and 5.2.

When comparing the optimal results between the two premium principles, we find that, under

(6.1), the optimal reinsurance strategy under the expected value principle is always larger than the

one under the variance premium principle. On the other hand, for λ 6= 0, the optimal investment

strategy under the expected value principle is always less than that under variance premium principle.

These results are expected since the variance premium principle is cheaper than the expected value

principle under (6.1) (see Remark 6.1). However, for λ = 0, we see from the two bold numbers in

Table 1 that the optimal investment strategies are the same under the two premium principles. This

suggests that when the dependence between the risky asset and the aggregate claims is vanished,

the choice of premium principle do affect the optimal reinsurance strategy but not the optimal

investment strategy.

Example 6.2. In this example, we set T = 15, t = 5, r = 0.05, b = 0.3, σ = 0.35, Λ = 2, η = 2,

λ1 = 0.4, λ2 = 0.2, λ = 0.3, α1 = 2, and α2 = 5. Table 4 presents the impact of ν on the optimal

results.

Table 4 Effect of ν on the optimal strategy

ν 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

expected value q∗ 1 1 1 1 0.98717 0.82264 0.70512 0.61698 0.54843

principle u∗ 4.93470 2.32594 1.43960 0.98002 0.69353 0.57794 0.49538 0.43346 0.38529

variance premium q∗ 0.93211 0.88079 0.82575 0.76942 0.71423 0.66202 0.61386 0.57016 0.53087

principle u∗ 4.95234 2.36171 1.50000 1.07260 0.82001 0.65538 0.54085 0.45744 0.39450

We see from Table 4 that both q∗ and u∗ decrease as ν increases. Note that ν is the constant
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absolute risk aversion parameter of the utility function, a large value of ν means more risk averse.

This implies that if the decision maker is more risk averse, a larger portion of the underlying risk

will be transferred to a reinsurer and less money will be invested into the risky asset. This is also a

natural consequence of Proposition 5.3. Moreover, in Table 4, we see that the optimal results of the

two premium principles behave like those observed in Tables 1∼3.

7 Conclusion

We first recap the main results of the paper. From an insurer’s point of view, we consider the

optimal reinsurance and investment problem with jump-diffusion risky asset in a compound Poisson

risk model, where the aggregate claims and the stock price are correlated through a common shock.

With some constraints on the control variables, we use a nonstandard approach to investigate the

existence and uniqueness of the optimal reinsurance and investment strategy. Under the criterion of

maximizing the expected exponential utility, we derive the closed-form expressions for the optimal

strategy and value function for two frequently-used premium principles, namely the expected value

principle and the variance premium principle. Furthermore, we examine the impact of the common

shock parameter as well as some other model parameters on the optimal strategy. The numerical

results show that as the degree of common shock dependence increases, the optimal investment

strategy decreases but the associated optimal reinsurance strategy does not necessarily decrease.

The latter also depends very much on the values of other parameters in the model of study. Besides

the common shock parameter, we numerically examine the effects of other model parameters on the

optimal strategy which are more or less consistent with the analytical results.

As for future research, there are still other interesting problems in this direction for further

investigation. For example, one may consider the optimal reinsurance and investment problem

with dependence in the framework of stochastic differential games with partial information, or in

a Markovian regime-switching economy. Moreover, additional constraints on the probability of

ruin certainly make the optimal reinsurance and investment problem with the expected utility very

challenging, especially for risk processes with jumps.
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