30 research outputs found

    Virtual Sound Source Reproduction Based on Point-Interference of Ultrasounds

    No full text

    Parametric sound fields by phase-cancellation excitation of primary waves.

    No full text
    By radiating bifrequency primary waves from two ultrasonic emitters with changing the phases of the primary waves, we can obtain the sound fields that are different from the usual in‐phase excitation. Especially, for the excitation of out‐phase by 180 degrees the difference frequency wave has the directivity of almost uniformity near the acoustic axis. Additionally, the sound pressure levels of the harmonic components of the difference frequency and the primary waves as well are suppressed by 10 dB and mor

    A review of parametric acoustic array in air

    No full text
    In this review paper, we examine some of the recent advances in the parametric acoustic array (PAA) since it was first applied in air in 1983 by Yoneyama. These advances include numerical modelling for nonlinear acoustics, theoretical analysis and experimentation, signal processing techniques, implementation issues, applications of the parametric acoustic array, and some safety concerns in using the PAA in air. We also give a glimpse on some of the new work on the PAA and its new applications. This review paper gives a tutorial overview on some of the foundation work in the PAA, and serves as a prelude to the recent works that are reported by different research groups in this special issue

    Propagation characteristics of airborne ultrasonic waves in porous materials

    No full text

    Ultrasound field measurement using a binary lens

    No full text

    Spatial aliasing effects in a steerable parametric loudspeaker for stereophonic sound reproduction

    No full text
    Earlier attempts to deploy two units of parametric loudspeakers have shown encouraging results in improving the accuracy of spatial audio reproductions. As compared to a pair of conventional loudspeakers, this improvement is mainly a result of being free of crosstalk due to the sharp directivity of the parametric loudspeaker. By replacing the normal parametric loudspeaker with the steerable parametric loudspeaker, a flexible sweet spot can be created that tolerates head movements of the listener. However, spatial aliasing effects of the primary frequency waves are always observed in the steerable parametric loudspeaker. We are motivated to make use of the spatial aliasing effects to create two sound beams from one unit of the steerable parametric loudspeaker. Hence, a reduction of power consumption and physical size can be achieved by cutting down the number of loudspeakers used in an audio system. By introducing a new parameter, namely the relative steering angle, we propose a stereophonic beamsteering method that can control the amplitude difference corresponding to the interaural level difference (ILD) between two sound beams. Currently, this proposed method does not support the reproduction of interaural time differences (ITD).Published versio
    corecore