45 research outputs found

    Using gene expression profiles from peripheral blood to identify asymptomatic responses to acute respiratory viral infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent study reported that gene expression profiles from peripheral blood samples of healthy subjects prior to viral inoculation were indistinguishable from profiles of subjects who received viral challenge but remained asymptomatic and uninfected. If true, this implies that the host immune response does not have a molecular signature. Given the high sensitivity of microarray technology, we were intrigued by this result and hypothesize that it was an artifact of data analysis.</p> <p>Findings</p> <p>Using acute respiratory viral challenge microarray data, we developed a molecular signature that for the first time allowed for an accurate differentiation between uninfected subjects prior to viral inoculation and subjects who remained asymptomatic after the viral challenge.</p> <p>Conclusions</p> <p>Our findings suggest that molecular signatures can be used to characterize immune responses to viruses and may improve our understanding of susceptibility to viral infection with possible implications for vaccine development.</p

    Expanding the Understanding of Biases in Development of Clinical-Grade Molecular Signatures: A Case Study in Acute Respiratory Viral Infections

    Get PDF
    The promise of modern personalized medicine is to use molecular and clinical information to better diagnose, manage, and treat disease, on an individual patient basis. These functions are predominantly enabled by molecular signatures, which are computational models for predicting phenotypes and other responses of interest from high-throughput assay data. Data-analytics is a central component of molecular signature development and can jeopardize the entire process if conducted incorrectly. While exploratory data analysis may tolerate suboptimal protocols, clinical-grade molecular signatures are subject to vastly stricter requirements. Closing the gap between standards for exploratory versus clinically successful molecular signatures entails a thorough understanding of possible biases in the data analysis phase and developing strategies to avoid them.Using a recently introduced data-analytic protocol as a case study, we provide an in-depth examination of the poorly studied biases of the data-analytic protocols related to signature multiplicity, biomarker redundancy, data preprocessing, and validation of signature reproducibility. The methodology and results presented in this work are aimed at expanding the understanding of these data-analytic biases that affect development of clinically robust molecular signatures.Several recommendations follow from the current study. First, all molecular signatures of a phenotype should be extracted to the extent possible, in order to provide comprehensive and accurate grounds for understanding disease pathogenesis. Second, redundant genes should generally be removed from final signatures to facilitate reproducibility and decrease manufacturing costs. Third, data preprocessing procedures should be designed so as not to bias biomarker selection. Finally, molecular signatures developed and applied on different phenotypes and populations of patients should be treated with great caution

    Approaches to working in high-dimensional data spaces: gene expression microarrays

    Get PDF
    This review provides a focused summary of the implications of high-dimensional data spaces produced by gene expression microarrays for building better models of cancer diagnosis, prognosis, and therapeutics. We identify the unique challenges posed by high dimensionality to highlight methodological problems and discuss recent methods in predictive classification, unsupervised subclass discovery, and marker identification

    Fungus against the wall

    No full text
    corecore