51 research outputs found

    Semantic contextualisation of social tag-based profiles and item recommendations

    Full text link
    Proceedigns of 12th International Conference, EC-Web 2011, Toulouse, France, August 30 - September 1, 2011.The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-23014-1_9We present an approach that efficiently identifies the semantic meanings and contexts of social tags within a particular folksonomy, and exploits them to build contextualised tag-based user and item profiles. We apply our approach to a dataset obtained from Delicious social bookmarking system, and evaluate it through two experiments: a user study consisting of manual judgements of tag disambiguation and contextualisation cases, and an offline study measuring the performance of several tag-powered item recommendation algorithms by using contextualised profiles. The results obtained show that our approach is able to accurately determine the actual semantic meanings and contexts of tag annotations, and allow item recommenders to achieve better precision and recall on their predictions.This work was supported by the Spanish Ministry of Science and Innovation (TIN2008-06566-C04-02), and the Community of Madrid (CCG10- UAM/TIC-5877

    Isometric Sliced Inverse Regression for Nonlinear Manifolds Learning

    Get PDF
    [[abstract]]Sliced inverse regression (SIR) was developed to find effective linear dimension-reduction directions for exploring the intrinsic structure of the high-dimensional data. In this study, we present isometric SIR for nonlinear dimension reduction, which is a hybrid of the SIR method using the geodesic distance approximation. First, the proposed method computes the isometric distance between data points; the resulting distance matrix is then sliced according to K-means clustering results, and the classical SIR algorithm is applied. We show that the isometric SIR (ISOSIR) can reveal the geometric structure of a nonlinear manifold dataset (e.g., the Swiss roll). We report and discuss this novel method in comparison to several existing dimension-reduction techniques for data visualization and classification problems. The results show that ISOSIR is a promising nonlinear feature extractor for classification applications.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Skeleton Clustering by Autonomous Mobile Robots for Subtle Fall Risk Discovery

    No full text

    Local Learning, Global Learning: A View from Pima Diabetes Database

    No full text

    Image annotation using metric learning in semantic neighbourhoods

    No full text
    Abstract. Automatic image annotation aims at predicting a set of textual labels for an image that describe its semantics. These are usually taken from an annotation vocabulary of few hundred labels. Because of the large vocabulary, there is a high variance in the number of images corresponding to different labels (“class-imbalance”). Additionally, due to the limitations of manual annotation, a significant number of available images are not annotated with all the relevant labels (“weaklabelling”). These two issues badly affect the performance of most of the existing image annotation models. In this work, we propose 2PKNN, a two-step variant of the classical K-nearest neighbour algorithm, that addresses these two issues in the image annotation task. The first step of 2PKNN uses “image-to-label ” similarities, while the second step uses “image-to-image ” similarities; thus combining the benefits of both. Since the performance of nearest-neighbour based methods greatly depends on how features are compared, we also propose a metric learning framework over 2PKNN that learns weights for multiple features as well as distances together. This is done in a large margin set-up by generalizing a well-known (single-label) classification metric learning algorithm for multi-label prediction. For scalability, we implement it by alternating between stochastic sub-gradient descent and projection steps. Extensive experiments demonstrate that, though conceptually simple, 2PKNN alone performs comparable to the current state-of-the-art on three challenging image annotation datasets, and shows significant improvements after metric learning.

    Metric Learning with Relative Distance Constraints: A Modified SVM Approach

    No full text

    Global Metric Learning by Gradient Descent

    No full text
    corecore